\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{torsion theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{additive_and_abelian_categories}{}\paragraph*{{Additive and abelian categories}}\label{additive_and_abelian_categories} [[!include additive and abelian categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{torsion_part_of_an_object}{Torsion part of an object}\dotfill \pageref*{torsion_part_of_an_object} \linebreak \noindent\hyperlink{hereditary_torsion_theories}{Hereditary torsion theories}\dotfill \pageref*{hereditary_torsion_theories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{torsion theory} in an [[abelian category]] $A$ is a [[pair]] $(T,F)$ of [[additive category|additive]] [[subcategories]], called the \textbf{torsion class} $T$ and the \textbf{torsion free class} $F$, such that the following conditions hold: \begin{itemize}% \item $Hom(T,F) = 0$ \end{itemize} (in other words, $A(X,Y) = 0$ if $X \in Ob T$ and $Y\in Ob F$). \begin{itemize}% \item $Hom(T,Y) = 0 \Rightarrow Y\in Ob F$ \item $Hom(X,F) = 0 \Rightarrow X\in Ob T$ \item for all $X\in Ob A$, there exists $Y\subset X$, $Y\in Ob T$ and $X/Y\in Ob F$ \end{itemize} Equivalently, a torsion theory in $A$ is a pair $(T,F)$ of [[strictly full subcategories]] of $A$ such that the first and last conditions in the above list hold. Alternatively, we can require the last condition and the following 3: $T\cap F=\{0\}$, $T$ is closed under quotients and $F$ under subobjects. It follows also that $T$ and $F$ are stable under extensions. \hypertarget{torsion_part_of_an_object}{}\subsubsection*{{Torsion part of an object}}\label{torsion_part_of_an_object} If the [[abelian category]] $A$ satisfies the [[Pierre Gabriel|Gabriel]]`s [[property (sup)]] then for every [[object]] $X$ there exist the largest [[subobject]] $t(X)\subset X$ which is in $T$ and it is called the \emph{torsion part} of $X$ (sometimes written as $X_T$). Under the [[axiom of choice]], $t: X\to t(X)$ can be extended to a functor. \hypertarget{hereditary_torsion_theories}{}\subsubsection*{{Hereditary torsion theories}}\label{hereditary_torsion_theories} A torsion theory is called \textbf{hereditary} if $T$ is closed under [[subobjects]], or equivalently, $t$ is [[left exact functor]]. For some authors (e.g. Golan) torsion theory is assumed to be hereditary. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} If $(T,F)$ is a torsion class then $T$ and $F$ both contain the [[zero object]] and are closed under [[biproducts]] (\href{ncatlab.org/nlab/show/Handbook+of+Categorical+Algebra}{Borceux II 1.12.3}). Presentation of an object $X$ in $Ob A$ as an [[extension]] $0\to Y\to X\to X/Y\to 0$, $Y$ in $Ob T$ by $X/Y$ in $Ob F$ is unique up to an [[isomorphism]] of [[short exact sequences]] (\href{ncatlab.org/nlab/show/Handbook+of+Categorical+Algebra}{Borceux II 1.12.4}). Given an [[abelian category]] $A$ there is a [[bijection]] between universal [[closure operator|closure operations]] on $A$, hereditary torsion theories in $A$ (\href{ncatlab.org/nlab/show/Handbook+of+Categorical+Algebra}{Borceux II 1.12.8}) and, if $A$ is a [[locally finitely presentable category]] also with [[left exact functor|left exact]] [[localizations]] of $A$ admitting a [[right adjoint]] and with [[localizing subcategories]] of $A$ (\href{ncatlab.org/nlab/show/Handbook+of+Categorical+Algebra}{Borceux II 1.13.15}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The basic example of a torsion class is the class of [[torsion subgroup|torsion]] [[abelian groups]] within the [[category]] $A =$ [[Ab]] of all [[abelian groups]]. The torsion theories are often used as a means to formulate [[localization]] theory in [[abelian categories]]. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Comprehensive accounts are in \begin{itemize}% \item [[Francis Borceux]], \emph{[[Handbook of Categorical Algebra]]}, vol. 2 \item N. Popescu, \emph{Abelian categories with applications to rings and modules}, London Math. Soc. Monographs 3, Academic Press 1973. xii+467 pp. \href{http://www.ams.org/mathscinet-getitem?mr=0340375}{MR0340375} \item [[Joachim Lambek]], \emph{Torsion theories, additive semantics, and rings of quotients}, with app. by H. H. Storrer on torsion theories and dominant dimensions. Lecture Notes in Mathematics \textbf{177}, Springer-Verlag 1971, vi+94 pp. \href{http://www.ams.org/mathscinet-getitem?mr=284459}{MR284459} \end{itemize} Historically the notion is introduced in \begin{itemize}% \item Spencer E. Dickson, \emph{A torsion theory for Abelian categories}, Trans. Amer. Math. Soc. \textbf{121}, No. 1 (Jan., 1966), pp. 223-235, \href{http://www.jstor.org/stable/1994341}{jstor} \end{itemize} For a unified treatment in Abelian and [[triangulated categories]] see \begin{itemize}% \item Apostolos Beligiannis, Idun Reiten, \emph{Homological and homotopical aspects of torsion theories}, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp. \href{http://www.math.uoi.gr/~abeligia/torsion.pdf}{pdf} \end{itemize} As explained there, in triangulated context, torsion pairs are in 1-1 correspondence with [[t-structure]]s. One could also study a relation between torsion theories on an abelian category with tilting theory and $t$-structures on the derived category: \begin{itemize}% \item Dieter Happel, Idun Reiten, Sverre O. Smal\o{}, \emph{Tilting in abelian categories and quasitilted algebras}, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 \item Riccardo Colpi, Luisa Fiorot, Francesco Mattiello, \emph{On tilted Giraud subcategories}, \href{http://arxiv.org/abs/1307.1987}{arxiv/1307.1987} \end{itemize} Other references in abelian context include \begin{itemize}% \item Lia Va\v{s}, \emph{Differentiability of torsion theories}, (\href{http://www.usciences.edu/~lvas/homepage_sa_umdja/difftt_single.pdf}{pdf}) \end{itemize} For analogues in nonadditive contexts see \begin{itemize}% \item [[Michael Barr]], \emph{Non-abelian torsion theories}, Canad. J. Math. 25 (1973) 1224--1237 \item Basil A. Rattray, \emph{Torsion theories in non-additive categories}, Manuscripta Math. \textbf{12} (1974), 285--305 \href{http://www.ams.org/mathscinet-getitem?mr=340360}{MR340360} \href{http://dx.doi.org/10.1007/BF01155518}{doi} \item [[Jiří Rosický ]], [[Walter Tholen]], \emph{Factorization, fibration and torsion}, \href{http://arxiv.org/abs/0801.0063}{arxiv/0801.0063}, Journal of homotopy and Related Structures \item M. M. Clementino, D. Dikranjan, [[Walter Tholen]], \emph{Torsion theories and radicals in normal categories}, J. of Algebra \textbf{305} (2006) 92-129 \item [[Dominique Bourn]], [[Marino Gran]], \emph{Torsion theories in homological categories}, J. of Algebra \textbf{305} (2006) 18--47 \href{http://www.ams.org/mathscinet-getitem?mr=2262518}{MR2007k:18018} \href{http://dx.doi.org/10.1016/j.jalgebra.2006.07.011}{doi} \end{itemize} [[!redirects torsion theories]] \end{document}