\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{torsor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_sets}{In sets}\dotfill \pageref*{in_sets} \linebreak \noindent\hyperlink{in_topological_spaces}{In topological spaces}\dotfill \pageref*{in_topological_spaces} \linebreak \noindent\hyperlink{in_sheaves}{In sheaves}\dotfill \pageref*{in_sheaves} \linebreak \noindent\hyperlink{GroupExtensions}{Group extensions}\dotfill \pageref*{GroupExtensions} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{torsors_in_}{Torsors in $Set$}\dotfill \pageref*{torsors_in_} \linebreak \noindent\hyperlink{LocalTrivialization}{Local trivialization}\dotfill \pageref*{LocalTrivialization} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $G$ a [[group]], a $G$-\textbf{torsor} (also called a \textbf{principal homogeneous space}) is an [[inhabited object]]/[[space]] $P$ with an [[action]] $\rho : G \times P \to P$ by $G$ that is \begin{itemize}% \item [[free action|free]]: only the identity element acts with fixed points; \end{itemize} and \begin{itemize}% \item [[transitive action|transitive]]: for every two points in (a fiber of) the space, there is an element of the group taking one to the other. \end{itemize} The second axiom says that $\langle \rho, \pi_2 \rangle: G \times P \to P \times P$ is surjective, and the first says it is injective. In other words, in the classical case where we are working in the category of sets over the point, a torsor is a [[heap]]: a $G$-set $P$ with action $\rho: G \times P \to P$ such that every choice of point $p \in P$ induces an isomorphism of $G$-sets \begin{displaymath} \rho(-,p) : G \stackrel{\simeq}{\to} P \,. \end{displaymath} This says equivalently that \emph{after picking any point of $P$ as the identity} , $P$ acquires a group structure isomorphic to $G$. But this is a non-canonical isomorphism: every choice of point of $P$ yields a different isomorphism. As a \textbf{slogan} we can summarize this as: \emph{A torsor is like a group that has forgotten its neutral element.} Again, this applies to torsors ``over the point'' in $Set$. More generally, one may consider torsors over some base space $B$ (in other words, working in the [[topos]] of sheaves over $B$ instead of $Set$). In this case the term \textbf{$G$-torsor} is often used more or less a synonym for the term $G$-[[principal bundle]], but torsors are generally understood in contexts much wider than the term ``principal bundle'' is usually taken to apply. And a principal bundle is strictly speaking a torsor that is required to be \emph{locally trivial} . Thus, while the terminology `principal bundle' is usually used in the setting of [[topological spaces]] or [[smooth manifold]]s, the term \emph{torsor} is traditionally used in the more general contex of [[Grothendieck topology|Grothendieck topologies]] (faithfully flat and \'e{}tale topology in particular), [[topos|topoi]] and for generalizations in various category-theoretic setups. While in the phrase `$G$-principal bundle' $G$ is usually a (topological) [[group]] or [[groupoid]], when we say `$G$-torsor', $G$ is usually a [[presheaf]] or [[sheaf]] of group(oid)s, or $G$ is a plain [[category]] (not necessarily even a groupoid). A \textbf{$G$-torsor}, without any base space given, can also simply be an inhabited transitive free $G$-[[action|set]], which is the same as a principal $G$-bundle over the [[point]]. The notion may also be defined in any category with products: a torsor over a [[group object]] $G$ is a [[well-supported object]] $E$ together with a $G$-action $\alpha: G \times E \to E$ such that the arrow \begin{displaymath} \langle \pi_1, \alpha \rangle: G \times E \to E \times E \end{displaymath} is an [[isomorphism]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $G$ be a [[group]] object in some [[category]] $C$, that in the following is assumed, for simplicity, to be a [[cartesian monoidal category]]. The [[object]]s of $C$ we sometimes call [[space]]s. Examples to keep in mind are $C =$ [[Set]] (in which case $G$ is an ordinary [[group]]) or [[Top]] (in which case it is a [[topological group]]) or [[Diff]] (in which case it is a [[Lie group]]). \begin{udefn} A left \textbf{$G$-torsor} is an [[inhabited object]] $P$ equipped with a $G$-[[action]], $\rho: G \times P \to P$ (subject to the usual laws for actions) such that the map \begin{displaymath} \langle \rho, \pi_2 \rangle: G \times P \to P \times P \end{displaymath} is an [[isomorphism]]. \end{udefn} More generally, suppose $C$ is [[finitely complete category|finitely complete]], and let $B$ be an object. Then the [[slice category|slice]] $C/B$ is finitely complete, and the pullback functor $- \times B: C \to C/B$ preserves finite limits. Thus $\pi_2: G \times B \to B$ acquires a group structure in $C/B$. \begin{udefn} A left \textbf{$G$-torsor over $B$} is a $G$-torsor in $C/B$. \end{udefn} Thus, if $B = 1$ is a point, a torsor over a point is the same as an ordinary torsor in $C$, but sometimes the additional ``over a point'' is convenient for the sake of emphasis. We restate this definition equivalently in more nuts-and-bolts terms. The ambient category is $C$, as before. \begin{udefn} A left $G$-torsor over $B \in C$ is a [[bundle]] $P\stackrel{\pi}{\to} B$ over $B$ together with a left group [[action]] \begin{displaymath} \rho : G\times_B P \to P \end{displaymath} which in terms of [[generalized element]]s we write \begin{displaymath} (g,p)\to g.p \end{displaymath} such that the induced morphism of [[product]]s \begin{displaymath} \phi := (\rho, p_2) : G\times_B P \to P\times_B P \end{displaymath} which on elements acts as \begin{displaymath} (g,p)\to (g.p,p) \end{displaymath} is an [[isomorphism]]. \end{udefn} \begin{uremark} As we explain \hyperlink{LocalTrivialization}{below}, a torsor is in some tautological sense \textbf{locally trivial}, but some care must be taken in interpreting this. One sense is that there is a cover $U$ of $1$ (so that $U \to 1$ is epi, i.e., $U$ is inhabited) such that the torsor, when pulled back to $U$, becomes trivial (i.e., isomorphic to $G$ as $G$-torsor). But this is a very general notion of ``cover''. A more restrictive sense frequently encountered in the literature is that ``cover'' means a coproduct of subterminal objects $U_i \hookrightarrow 1$ such that $U = \sum_i U_i$ is inhabited (e.g., an open cover of a space $B$ seen as the terminal object of the sheaf topos $Sh(B)$), and ``torsor'' would then refer to the local triviality condition for some such $U$. This is the more usual sense when referring to principal bundles as torsors. Or, ``cover'' could refer to a covering sieve in a [[Grothendieck topology]]. (The condition on the action can be translated to give transitivity etc. in the case of $B$ is a point (left as a standard exercise).) \end{uremark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_sets}{}\subsubsection*{{In sets}}\label{in_sets} Let $C =$ [[Set]]. \begin{itemize}% \item An [[affine space]] of dimension $n$ over a [[field]] $k$ is a torsor for the additive group $k^n$: this acts by \emph{translation}. \item A [[unit of measurement]] is (typically) an element in an $\mathbb{R}^\times$-torsor, for $\mathbb{R}^\times$ the multiplicative group of non-zero [[real number]]s: for $u$ any unit and $r \in \mathbb{R}$ any non-vanishing real number, also $r u$ is a unit. And for $u_1$ and $u_2$ two units, one is expressed in terms of the other by a unique $r \neq 0$ as $u_1 = r u_2$. For instance for units of [[mass]] we have the unit of [[kilogram]] and that of gram and there is a unique number, $r = 1000$ with \begin{displaymath} kg = 1000 g \,. \end{displaymath} \end{itemize} \hypertarget{in_topological_spaces}{}\subsubsection*{{In topological spaces}}\label{in_topological_spaces} Let $C =$ [[Top]], so that all objects are [[topological space]]s and groups $G$ are [[topological group]]s. A topological $G$-[[principal bundle]] $\pi: P \to B$ is an example of a torsor over $B$ in $Top$. This becomes a definition of principal bundle if we demand local triviality with respect to some open cover of $B$ (see the remarks \hyperlink{LocalTrivialization}{below}). \hypertarget{in_sheaves}{}\subsubsection*{{In sheaves}}\label{in_sheaves} Let $C = Sh(S)$ be a [[category of sheaves]] over a [[site]] $S$. The canonical example for a torsor in $C$ is the [[trivial torsor]] over a [[sheaf]] of groups, $G$. (\ldots{}) \hypertarget{GroupExtensions}{}\subsubsection*{{Group extensions}}\label{GroupExtensions} Every [[group extension]] $A \to \hat G \to G$ canonically equips $\hat G$ with the structure of an $A$-torsor over $G$. See for details \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{torsors_in_}{}\subsubsection*{{Torsors in $Set$}}\label{torsors_in_} Let $P$ be a $G$-torsor over the point in the category $C =$ [[Set]]. Then as objects of $C$, $P$ is [[isomorphism|isomorphic]] to $G$: since $P$ is [[inhabited set|inhabited]] (here meaning non-empty), we may pick an point $p : * \to P$ of $P$. Write $\{p\} \to P$ for this morphism, for emphasis. One sees that the diagram \begin{displaymath} \itexarray{ G \simeq G \times \{p\} &\stackrel{(Id, p)}{\to}& G \times P \\ \downarrow^{\mathrlap{\rho(-,p)}} && \downarrow^{\mathrlap{\langle \rho, \pi_2}} \\ P \times \{p\} &\stackrel{(Id,p)}{\to}& P \times P } \end{displaymath} is a [[pullback]] diagram. But since $\rho$ is by assumption an [[isomorphism]], and since pullbacks of isomorphisms are isomorphisms, also $\rho(-,p) : G \to P$ is an isomorphism. In other language, we say $P$ is \textbf{trivial} if it is isomorphic to $G$ as $G$-torsor, and a choice of isomorphism such as $\rho(-, p): G \to P$ is a \textbf{trivialization}. Notice that the composite \begin{displaymath} P \times P \stackrel{\rho^{-1}}{\to} G \times P \stackrel{\pi_1}{\to} G \end{displaymath} can be interpreted as ``division'' $d: P \times P \to G$, dividing one element of $P$ by another to get an element of $G$. If we further compose division with a choice of trivialization, \begin{displaymath} P \times P \stackrel{d}{\to} G \stackrel{\rho(-, p)}{\to} P, \end{displaymath} then we get a division structure $D$ on $P$ for which $p$ behaves as an identity (i.e., $D(x, x) = p$ for all $x \in P$), so that $P$ acquires a group structure isomorphic to that of $G$. \hypertarget{LocalTrivialization}{}\subsubsection*{{Local trivialization}}\label{LocalTrivialization} In other categories $C$ besides $Set$, we cannot just ``pick a point'' of $P$ even if $P \to 1$ is an [[epimorphism]], so this argument cannot be carried out, and indeed trivializations may not exist. However, it is possible to construct a local trivialization of a torsor, following a general philosophy from [[topos theory]] that a statement is ``locally true'' in a category $C$ if it becomes true when reinterpreted in a slice after pulling back $C \to C/U$, where $U$ is inhabited. (This in some sense is the basis of [[Kripke-Joyal semantics]].) In the present case, we may take $U = P$. Although we cannot ``pick a point'' of $P$ (= global section of $P \to 1$), we can pick a point of $P$ if we reinterpret it by pulling back to $C/P$. In other words, $\pi_2: P \times P \to 1 \times P \cong P$ does have a global section regarded as an arrow in $C/P$. In fact, there is a ``generic point'': the diagonal $\Delta: P \to P \times P$. Then, we may mimic the argument above, and consider the pullback diagram \begin{displaymath} \itexarray{ G \times P & \to & G \times P \times P \\ \downarrow & & \downarrow \mathrlap{\langle \rho, \pi_2 \rangle \times id} \\ P \times P & \underset{id \times \Delta}{\to} & P \times P \times P } \end{displaymath} living in $C/P$. As argued above, the vertical arrow on the left is an isomorphism; in fact, it is the isomorphism $\langle \rho, \pi_2 \rangle: G \times P \to P \times P$ we started with! Thus, a $G$-torsor in a category with products can be tautologically interpreted in terms of $G$-actions on objects $P$ which become trivialized upon pulling back to the slice $C/P$. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \begin{itemize}% \item Instead of a torsor over a group, one can consider a torsor over a [[category]]. See [[torsor with structure category]]. \item In [[noncommutative algebraic geometry]], faithfully flat [[Hopf-Galois extension]]s are considered a generalization of (affine) torsors in algebraic geometry. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homogeneous space]] \item [[principal bundle]] / [[associated bundle]] \item [[principal 2-bundle]] / [[gerbe]] / [[bundle gerbe]] \item [[principal 3-bundle]] / [[bundle 2-gerbe]] \item [[principal ∞-bundle]] / [[associated ∞-bundle]] \item [[descent along a torsor]], [[Schneider's descent theorem]] \item [[Hopf-Galois extension]], [[quantum homogeneous space]], \item [[noncommutative principal bundle]], [[quantum heap]] \item [[physical unit]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For elementary examples of torsors over the point in [[Set]] , see: \begin{itemize}% \item [[John Baez]], \emph{Torsors made easy}, (\href{http://math.ucr.edu/home/baez/torsors.html}{web}) \end{itemize} A general [[topos]]-theoretic account is in section B3.2 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} . \end{itemize} See also the references at \emph{[[Diaconescu's theorem]]}. Some categorically-oriented articles discussing torsors are \begin{itemize}% \item [[Tomasz Brzeziński]], \emph{On synthetic interpretation of quantum principal bundles}, AJSE D - Mathematics 35(1D): 13-27, 2010 \href{http://arxiv.org/abs/0912.0213}{arXiv:0912.0213} \item D. H. Van Osdol, \emph{Principal homogeneous objects as representable functors}, Cahiers Topologie G\'e{}om. Diff\'e{}rentielle 18 (1977), no. 3, 271--289, \href{http://www.numdam.org/item?id=CTGDC_1977__18_3_271_0}{numdam} \item K. T. S. Mohapeloa, \emph{A $2$-colimit characterization of internal categories of torsors}, J. Pure Appl. Algebra 71 (1991), no. 1, 75--91, \href{http://dx.doi.org/10.1016/0022-4049%2891%2990041-Y}{doi} \item Thomas Booker, Ross Street, \emph{Torsors, herds and flocks}, \href{http://arxiv.org/abs/0912.4551}{arXiv:0912.4551} \item J. Duskin, \emph{Simplicial methods and the interpretation of `triple' cohomology}, Memoirs AMS \textbf{3}, issue 2, n\textdegree{} 163, 1975. MR393196 \item A. Vistoli, \emph{Grothendieck topologies, fibered categories and descent theory}, in: [[FGA explained]], 1--104, Math. Surveys Monogr., 123, AMS 2005, \href{http://front.math.ucdavis.edu/0412.5512}{math.AG/0412512} \item [[Ieke Moerdijk]], \emph{Introduction to the language of stacks and gerbes}, \href{http://arxiv.org/abs/math/0212266}{math.AT/0212266}. \end{itemize} A standard elementary discussion of torsors in algebraic geometry is in J. Milne's book \emph{Etale cohomology}. Much material is also in Giraud's book on nonabelian cohomology. MathOverflow: \href{http://mathoverflow.net/questions/25863/torsors-for-monoids/25886}{torsors-for-monoids} [[!redirects torsors]] [[!redirects principal homogeneous space]] [[!redirects principal homogeneous spaces]] \end{document}