\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{total category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{total category} is a category with a well-behaved [[Yoneda embedding]] endowing the category with very good completeness and cocompleteness properties but still admitting most types of categories occurring ``in practice''. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[locally small category]] $C$ is \textbf{total} if its [[Yoneda embedding]] $Y \;\colon \;C\longrightarrow [C^{op},Set]$ has a [[left adjoint]] $L$. If the [[opposite category]] $C^{op}$ is total, $C$ is called \textbf{cototal}. \end{defn} \begin{remark} \label{}\hypertarget{}{} The definition above requires some [[set theory|set-theoretic]] assumption to ensure that the [[functor category]] $[C^{op},Set]$ exists, but it can be rephrased to say that the [[colimit]] of $Id_C:C\to C$ [[weighted limit|weighted]] by $W$ exists, for any $W:C^{op}\to Set$. (This still involves [[quantification]] over large objects, however, so some foundational care is needed.) This version has an evident generalization to [[enriched category|enriched]] categories. \end{remark} \begin{remark} \label{}\hypertarget{}{} Since the [[Yoneda embedding]] is a [[full and faithful functor]], a total category $C$ induces an [[idempotent monad]] $Y \circ L$ on its [[category of presheaves]], hence a [[modality]]. One says that $C$ is a [[totally distributive category]] if this modality is itself the [[right adjoint]] of an [[adjoint modality]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The $(L \dashv Y)$-[[adjunction]] of a total category is closely related to the $(\mathcal{O} \dashv Spec)$-[[adjunction]] discussed at \emph{[[Isbell duality]]} and at \emph{[[function algebras on ∞-stacks]]}. In that context the $L Y$-[[modality]] deserves to be called the \emph{[[affine modality]]}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item Total categories satisfy a very satisfactory [[adjoint functor theorem]]: any colimit-preserving functor from a total category to a locally small category has a [[right adjoint]]. \item Although the definition refers explicitly only to colimits, every total category is also [[complete category|complete]], i.e. has all small limits. It also has some large limits. In fact, it has ``all possible'' large limits that a locally small category can have: if $F\colon D\to C$ is a functor such that $lim_d Hom_C(X,F d)$ is a small set for all $X\in C$, then $F$ has a limit. \item A total category $\mathcal{C}$ is [[cartesian closed category|cartesian closed]] iff $L$ preserves binary products (cf. \hyperlink{Wood82}{Wood 1982}, thm. 9). \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{prop} \label{Day}\hypertarget{Day}{} Any [[cocomplete category|cocomplete]] and [[epi-cocomplete category|epi-cocomplete]] category with a [[generator]] is total. More generally, any cocomplete and $E$-complete category with an $E$-generator is total, for a suitable class $E$. \end{prop} See (\hyperlink{Day}{Day}), theorem 1, for a proof. This includes: \begin{itemize}% \item [[locally presentable category|locally presentable categories]], hence in particular [[Grothendieck toposes]], or the category of [[abelian sheaves]] on a small [[site]]. \end{itemize} Also, totality lifts along [[solid functors]]; that is, if the [[codomain]] of a solid functor is total, then so is its domain. See (\hyperlink{Tholen}{Tholen}) for a proof. This implies that the following types of categories are total: \begin{itemize}% \item any [[reflective subcategory]] of a total category \end{itemize} For example \begin{itemize}% \item any category which is [[monadic]] over [[Set]] \item any category admitting a [[topological functor]] to [[Set]] \item The category [[Grp]] of groups as a category monadic over $Set$ is total, but it is not cototal; see below. \item The category of [[topological groups]] is total as well since it is topological over the total category [[Grp]]. \item If $C$ is total and $J$ is small, then $C^J$ is total, morally because it is a reflective subcategory of $Set^{C^{op} \times J}$; see section 6 of \hyperlink{Kelly}{Kelly}. \end{itemize} Thus, ``most naturally-occurring'' cocomplete categories are in fact total. In practice, i.e., in naturally occurring concrete cases, cototality is more rare. For example, it is frequently \emph{not} the case that categories that are monadic over $Set$ are cototal. This is well-illustrated by the following two examples: \begin{itemize}% \item The category of groups [[Grp]] is not cototal; if it were, then any continuous functor $Grp \to Set$ would be representable. To see this is not the case, it suffices to produce a class of [[simple groups]] $G_\alpha$ of unbounded [[cardinality]] (for example, for any [[infinite set]] $X$, the [[alternating group]] $Alt(X)$, consisting of permutations of finite support that are even, is simple and of cardinality equal to that of $X$). For any group $G$, the hom-set $\hom(G_\alpha, G)$ consists of a single element (the trivial homomorphism) as soon as the cardinality of $G_\alpha$ exceeds that of $G$. Thus the class-indexed product $\prod_\alpha \hom(G_\alpha, G)$ is bounded in size, and defines a continuous functor $F = \prod_\alpha \hom(G_\alpha, -): Grp \to Set$. But it is clear this functor is not representable; e.g., for any group $G$, one can find $G_\alpha$ such that $F(G_\alpha)$ is much larger in size than $\hom(G, G_\alpha)$. This example is given in \hyperlink{Wood82}{Wood 1982}. \item By a similar construction, the category of commutative rings is not cototal. For each infinite cardinal $\alpha$, choose a field $F_\alpha$ of size $\alpha$, e.g., an algebraically closed field over $\mathbb{Q}$ of transcendence degree $\alpha$. Put $A_\alpha = \mathbb{Z} \times F_\alpha$. Then, for any commutative ring $R$, there is exactly one homomorphism $A_\alpha \to R$ as soon as $\alpha$ exceeds the cardinality of $R$. Then one argues that $\prod_\alpha \hom(A_\alpha, -): CRing \to Set$ is continuous but not representable. \end{itemize} But cototal categories do occur: \begin{itemize}% \item [[Set]] is cototal (as well as total). \item By dualizing Proposition \ref{Day}, [[Ab]] is cototal (as well as total), because it is complete, well-powered, and has a cogenerator (e.g., $\mathbb{Q}/\mathbb{Z}$). Similarly, the category of [[modules]] $R Mod$ is cototal (and total) for any [[ring]] $R$. For that matter, any [[well-powered category|well-powered]] [[Grothendieck category]], such as the category of [[abelian sheaves]] on a small [[site]], is cototal. \item Similarly, the category $CH$ of [[compact Hausdorff spaces]] is cototal (as well as total, being monadic over $Set$), because like $Ab$ it is complete, well-powered, and has a cogenerator $I = [0, 1]$ (cf. [[Urysohn's lemma]]). \item If $C$ is cototal and $J$ is small, then $C^J$ is cototal. \item Any [[presheaf category]] of a [[small category]] is cototal (as well as total). Indeed, any [[Grothendieck topos]] is both cototal and total. \item Any category admitting a [[topological functor]] to [[Set]] is cototal (as well as total). \item Any [[totally distributive category]] is cototal (as well as total). \item Any [[coreflective subcategory]] of a cototal category is cototal, e.g., the category of [[compactly generated spaces]] is cototal. \end{itemize} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[totally distributive category]] \item [[lex total category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ross Street]], [[Bob Walters]], \emph{Yoneda structures on 2-category}, (contains the original definition of total categories) \item [[Max Kelly]], \emph{A survey of totality for enriched and ordinary categories}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 27 no. 2 (1986), p. 109-132, \href{http://www.numdam.org/item?id=CTGDC_1986__27_2_109_0}{numdam} \end{itemize} \begin{itemize}% \item [[Walter Tholen]], \emph{Note on total categories}, Bulletin of the Australian Mathematical Society \href{http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=4759056}{cambridge journals} \end{itemize} \begin{itemize}% \item [[Brian Day]], \emph{Further criteria for totality}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 28 no. 1 (1987), p. 77-78, \href{http://www.numdam.org/item?id=CTGDC_1987__28_1_77_0}{numdam} \end{itemize} \begin{itemize}% \item [[Richard Garner]], \emph{Topological=Total} (\href{https://arxiv.org/abs/1310.0903}{arXiv:1310.0903}) \item [[Ross Street]], \emph{The family approach to total cocompleteness and toposes} , Trans. A. M. S. \textbf{284} (1984) pp.355-369, () \item [[Richard J. Wood]], \emph{Some remarks on total categories}, J. Algebra \textbf{75\_:2, 1982, 538--545 } \end{itemize} [[!redirects total categories]] [[!redirects cototal category]] [[!redirects cototal categories]] \end{document}