\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{trace} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{traces}{}\section*{{Traces}}\label{traces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{vertical_categorification}{Vertical categorification}\dotfill \pageref*{vertical_categorification} \linebreak \noindent\hyperlink{horizontal_categorification}{Horizontal categorification}\dotfill \pageref*{horizontal_categorification} \linebreak \noindent\hyperlink{partial_trace}{Partial trace}\dotfill \pageref*{partial_trace} \linebreak \noindent\hyperlink{matrix_representation}{Matrix representation}\dotfill \pageref*{matrix_representation} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $a$ a [[dualizable object]] in a [[symmetric monoidal category]] $C$ (or more generally an [[object]] in a [[traced monoidal category]]), there is a natural notion of the \emph{trace} of an [[endomorphism]] $f:a \to a$, which reproduces the ordinary notion of trace of a [[linear map]] of [[finite number|finite]] [[dimension|dimensional]] [[vector spaces]] in [[linear algebra]] for the case that $C = Vect$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The idea of the trace operation is easily seen in [[string diagram]] notation: essentially one takes the endomorphism $a \stackrel{f}{\to} a$, ``bends it around'' using the duality and the symmetry and connects its output to its input. \begin{displaymath} \itexarray{ 1 \\ \;\;\;\downarrow^{tr(f)} \\ 1 } \;\;\; := \;\;\; \itexarray{ & 1 \\ & \downarrow \\ a^* &\otimes& a \\ \downarrow^{\mathrlap{Id_{a^*}}} && \;\;\downarrow^f \\ a^* &\otimes& a \\ & \downarrow^{\mathrlap{b_{a^*, a}}} \\ a &\otimes& a^* \\ & \downarrow \\ & 1 } \end{displaymath} This definition makes sense in any [[braided monoidal category]], but often in non-symmetric cases one wants instead a slightly modified version which requires the extra structure of a [[balanced monoidal category|balancing]]. The trace of the identity $1_a:a \to a$ is called the \textbf{[[dimension]]} or [[Euler characteristic]] of $a$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item $C = Vect$ with its standard monoidal structure ([[tensor product]] of vector spaces): in this case tr(f) is the usual trace of a linear map; \item $C = SuperVect = (Vect_{\mathbb{Z}_2}, \otimes, b)$, the category of $\mathbb{Z}_2$-graded vector spaces with the \emph{non}trivial symmetric braiding which is $-1$ on two odd graded vector spaces: in this case the above is the \textbf{[[supertrace]]} on supervectorspaces, $str(V) = tr(V_{even}) - tr(V_odd)$. \item $C = Span(Top^{op})$: here the trace is the [[co-span co-trace]] which can be seen as describing the gluing of in/out boundaries of [[cobordism]]s \item $C = Span(Grpd)$: this reproduces the notion of trace of a linear map within the interpretation of spans of groupoids as linear maps in the context of [[groupoidification]] and [[geometric function theory]], made explicit at [[span trace]] \item In the [[symmetric monoidal (infinity,1)-category of spectra]], the trace on the identity on a [[suspension spectrum]] of a [[manifold]] $X$ is the [[Euler characteristic]] of $X$ (see there). \end{itemize} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{vertical_categorification}{}\subsubsection*{{Vertical categorification}}\label{vertical_categorification} See [[trace of a category]]. \hypertarget{horizontal_categorification}{}\subsubsection*{{Horizontal categorification}}\label{horizontal_categorification} See [[trace in a bicategory]]. \hypertarget{partial_trace}{}\subsubsection*{{Partial trace}}\label{partial_trace} If the morphism described above is the endomorphism of a tensor product object $V \otimes W$, then there is a similarly evident way to ``bend around'' only the W-strand. TO DO: Draw the diagram just described. \hypertarget{matrix_representation}{}\paragraph*{{Matrix representation}}\label{matrix_representation} Suppose $V$, $W$ are finite-dimensional vector spaces over a field, with dimensions $m$ and $n$, respectively. For any space $A$ let $L(A)$ denote the space of linear operators on $A$. The \textbf{partial trace} over $W$, Tr$_{W}$, is a mapping \begin{displaymath} T \in L(V \otimes W) \mapsto Tr_{W}(T) \in L(V). \end{displaymath} \begin{udefn} Let $e_{1}, \ldots, e_{m}$ and $f_{1}, \ldots, f_{n}$ be bases for $V$ and $W$ respectively. Then $T$ has a matrix representation $\{a_{k l,i j}\}$ where $1 \le k,i \le m$ and $1 \le l,j \le n$ relative to the basis of the space $V \otimes W$ given by $e_{k} \otimes f_{l}$. Consider the sum \begin{displaymath} b_{k,i} = \sum_{j=1}^{n}a_{k j,i j} \end{displaymath} for $k,i$ over $1, \ldots, m$. This gives the matrix $b_{k,i}$. The associated linear operator on $V$ is independent of the choice of bases and is defined as the partial trace. \end{udefn} \hypertarget{example}{}\paragraph*{{Example}}\label{example} Consider a quantum system, $\rho$, in the presence of an environment, $\rho_{env}$. Consider what is known in [[quantum information theory]] as the CNOT gate: \begin{displaymath} U={|00\rangle}{\langle 00|} + {|01\rangle}{\langle 01|} + {|11\rangle}{\langle 10|} + {|10\rangle}{\langle 11|}. \end{displaymath} Suppose our system has the simple state ${|1\rangle}{\langle 1|}$ and the environment has the simple state ${|0\rangle}{\langle 0|}$. Then $\rho \otimes \rho_{env} = {|10\rangle}{\langle 10|}$. In the quantum operation formalism we have \begin{displaymath} T(\rho) = \frac{1}{2}Tr_{env}U(\rho \otimes \rho_{env})U^{\dagger} = \frac{1}{2}Tr_{env}({|10\rangle}{\langle 10|} + {|11\rangle}{\langle 11|}) = \frac{{|1\rangle}{\langle 1|}{\langle 0|0\rangle} + {|1\rangle}{\langle 1|}{\langle 1|1\rangle}}{2} = {|1\rangle}{\langle 1|} \end{displaymath} where we inserted the normalization factor $\frac{1}{2}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[traced monoidal category]] \item [[Euler characteristic]] \item [[bicategorical trace]], \begin{itemize}% \item [[Reidemeister trace]] \end{itemize} \item [[higher trace]] \item [[Dennis trace]], [[cyclotomic trace]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The categorical notion of trace in a monoidal category is due to \begin{itemize}% \item [[Albrecht Dold]], and [[Dieter Puppe]], \emph{Duality, trace, and transfer} In Proceedings of the Inter- national Conference on Geometric Topology (Warsaw, 1978), pages 81\{102, Warsaw, 1980. PWN. \end{itemize} and \begin{itemize}% \item [[Max Kelly]] M. L. Laplaza, \emph{Coherence for compact closed categories} J. Pure Appl. Algebra, 19:193\{213, 1980. \end{itemize} Surveys include \begin{itemize}% \item [[Peter Selinger]], \emph{A survey of graphical languages for monoidal categories} (\href{http://www.mathstat.dal.ca/~selinger/papers/graphical.pdf}{pdf}), Section 5 \item [[Kate Ponto]], [[Mike Shulman]], \emph{Traces in symmetric monoidal categories} (\href{http://arxiv.org/pdf/1107.6032v1.pdf}{pdf}). \end{itemize} Generalization of this to [[indexed monoidal categories]] is in \begin{itemize}% \item [[Kate Ponto]], [[Mike Shulman]], \emph{Duality and traces for indexed monoidal categories}, Theory and Applications of Categories, Vol. 26, 2012, No. 23, pp 582-659 (\href{http://arxiv.org/abs/1211.1555}{arXiv:1211.1555}) \end{itemize} and to [[bicategories]] in \begin{itemize}% \item [[Kate Ponto]], [[Mike Shulman]], \emph{Shadows and traces in bicategories}, JHRS, (\href{http://arxiv.org/abs/1211.1555}{arXiv:1211.1555}) \end{itemize} Further developments are in \begin{itemize}% \item [[Andre Joyal]], [[Ross Street]], and [[Dominic Verity]], \emph{Traced Monoidal Categories} \item [[David Ben-Zvi]], [[David Nadler]], \emph{Nonlinear traces} (\href{http://arxiv.org/abs/1305.7175}{arXiv:1305.7175}) \end{itemize} For the notion of partial trace, particularly its application to [[quantum mechanics]], see: \begin{itemize}% \item Nielsen and Chuang, \emph{Quantum Computation and Quantum Information} \end{itemize} [[!redirects traces]] [[!redirects partial trace]] [[!redirects partial traces]] \end{document}