\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{trace of a category} \hypertarget{the_trace_of_a_category}{}\section*{{The trace of a category}}\label{the_trace_of_a_category} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The trace of a [[category]] (or more generally of an endo[[bimodule]] or endo[[profunctor]]) is a [[categorification]] of the [[trace]] of a linear [[endomorphism]] on a finite dimensional [[vector space]] (that is a [[matrix]]). A notion of trace is generally definable for maps in a [[compact closed category]] (even more generally in a [[traced monoidal category]]), and here the idea is to categorify this to the context of compact closed [[bicategories]], in particular the bicategory of bimodules between small categories. As an instance of the [[microcosm principle]], the trace of a category is the recipient of the \emph{universal trace} function for morphisms \emph{in} that category, and also supplies the necessary structure to define [[trace in a bicategory|bicategorical traces]] in the bicategory [[Prof]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a compact closed [[symmetric monoidal category]], with monoidal product $\otimes$ and monoidal unit $1$. The \textbf{trace} of an endomorphism $f: c \to c$ is the composite \begin{displaymath} 1 \overset{\eta}{\to} c^* \otimes c \overset{1_{c^*} \otimes f}{\to} c^* \otimes c \overset{\varepsilon}{\to} 1 \end{displaymath} where $\eta$ is a unit and $\varepsilon$ is a counit of appropriate [[adjunctions]] (note that the symmetry makes the dual $c^*$ both a right and left adjoint of $c$: the adjunctions are ambidextrous). In the classical case where $C$ is the category of finite-dimensional vector spaces with its usual monoidal structure, this gives the usual trace of an endomorphism; in particular, for $f = 1_c$, this defines $dim(c) \in hom(1, 1)$. The same idea applies to compact closed symmetric monoidal bicategories. In particular, it applies to the bicategory [[Prof]] whose objects are small categories, whose 1-morphisms are [[profunctors]] $C \to D$, i.e., functors \begin{displaymath} R: D^{op} \times C \to Set \end{displaymath} and whose 2-morphisms are [[natural transformations]] between profunctors. The bicategory $Prof$ is a [[cartesian bicategory]] and hence symmetric monoidal under $\times$, and is also compact closed: the dual of a category $C$ in this case is just the opposite category $C^{op}$, and the unit and counit profunctors \begin{displaymath} \eta: 1 \to C^{op} \times C, \, \varepsilon: C^{op} \times C \to 1 \end{displaymath} are given by $hom_{C^{op}}$ and $hom_C$. Composing these (according to the [[coend]] formula for profunctor composition) yields \begin{displaymath} \int^{c, c' \in Ob(C)} hom(c, c') \times hom(c', c) \cong \int^c hom(c, c) \end{displaymath} and this is the trace of the identity $1_C$ in $Prof$ (which as a functor is also given by $hom_C$); this coend is called the \textbf{trace} of the category $C$. It could also reasonably be called, by analogy with the vector space case, the \textbf{dimension} of the category $C$. The trace of a general endoprofunctor $F$ on $C$ is the coend \begin{displaymath} \int^{c \in Ob(C)} F(c, c) \end{displaymath} which generalizes the trace of linear functions: \begin{displaymath} Tr(f) = \sum_i f_{i i} \end{displaymath} (where the matrix entries $f_{i j}$ are computed with respect to any basis). The foregoing discussion can be generalized to the case of bimodules between small categories enriched in a [[cocomplete category|cocomplete]] symmetric [[monoidal closed category]] $V$, where the dimension of a small $V$-category $C$ is the object of $V$ given by the enriched coend \begin{displaymath} \int^c hom(c, c) \end{displaymath} \hypertarget{example}{}\subsection*{{Example}}\label{example} We calculate the trace or dimension of [[FinSet]], the category of finite sets. The calculation is quite down-to-earth: the relevant coend is just the quotient of the set of all endofunctions $h: c \to c$ between finite sets, modulo the equivalence relation $\sim$ generated by the stipulation $f \circ g \sim g \circ f$ whenever $f: c \to d$ and $g: d \to c$ are functions between finite sets. Let $h: c \to c$ be a finite endofunction, and let \begin{displaymath} c \overset{p}{\to} d \overset{i}{\to} c \end{displaymath} be its epi-mono factorization. Then $h = (i \circ p) \sim (p \circ i)$; if we think of $d$ as the image $h(c)$, then $p \circ i$ can be viewed as the restriction \begin{displaymath} {h|}\colon h(c) \to h(c) \end{displaymath} and this process iterates. The sequence of epis \begin{displaymath} h(c) \overset{h|}{\to} h^{(2)}(c) \overset{h|}{\to} \ldots \end{displaymath} eventually stabilizes (after finitely many steps) to a finite set $h^{(\infty)}(c)$ on which $h$ restricts to a [[surjection|surjective]] [[endofunction]], which is a bijection since we are dealing with finite sets. Thus every $h: c \to c$ is $\sim$-equivalent to a permutation $\sigma: d \to d$. Furthermore, given two permutations $\sigma: c \to c$ and $\tau: d \to d$ such that $\sigma \sim \tau$ is witnessed by a chain of function equalities \begin{displaymath} \sigma = g_1 f_1, \; f_1 g_1 = h_1 = g_2 f_2, \; \ldots, \; f_{n-1} g_{n-1} = h_{n-1} = g_n f_n, \; f_n g_n = \tau \end{displaymath} one may show (using $g_k h_k^j f_k = g_k (f_k g_k)^j f_k = (g_k f_k)^{j+1} = h_{k-1}^{j+1}$ and similarly $f_k h_{k-1}^j g_k = h_k^{j+1}$) that \begin{displaymath} g_1 g_2 \ldots g_{n-1} g_n f_n f_{n-1} \ldots f_2 f_1 = \sigma^n, \qquad f_n f_{n-1} \ldots f_2 f_1 g_1 g_2 \ldots g_{n-1} g_n = \tau^n \end{displaymath} which implies that $f = f_n \ldots f_1$ is invertible and $\tau f = f \sigma$, or $\tau = f \sigma f^{-1}$. Conversely, if $\tau = f \sigma f^{-1}$, then for $g = \sigma f^{-1}$ we have $\sigma = g f$ and $f g = \tau$, so $\sigma \sim \tau$. In other words, the trace of the category of finite sets is isomorphic to the trace of the [[core|underlying groupoid]] of finite sets and bijections, where the equivalence classes with respect to $\sim$ are the conjugacy classes of [[permutation]]s, given by cycle types. In this way, the trace of $FinSet$ is naturally identified with the class of finite [[Young diagram]]s. \begin{remark} \label{}\hypertarget{}{} Furthermore, the functorial operations $\hom(x, x) \times \hom(y, y) \to \hom(x \times x, y \times y)$ and $\hom(x, x) \times \hom(y, y) \to \hom(x + y, x + y)$ induce operations $\cdot: Tr(FinSet) \times Tr(FinSet) \to Tr(FinSet)$ and $+: Tr(FinSet) \times Tr(FinSet) \to Tr(FinSet)$. Since $\times$ distributes over $+$ in $FinSet$, we obtain a [[rig]] structure on $Tr(FinSet)$, namely the [[Burnside rig]] of $\mathbb{Z}$. \end{remark} [[!redirects trace of a category]] [[!redirects traces of categories]] [[!redirects universal trace]] [[!redirects shadow]] \end{document}