\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{traced monoidal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToCompactClosedCategories}{Relation to compact closed categories}\dotfill \pageref*{RelationToCompactClosedCategories} \linebreak \noindent\hyperlink{in_cartesian_monoidal_categories}{In cartesian monoidal categories}\dotfill \pageref*{in_cartesian_monoidal_categories} \linebreak \noindent\hyperlink{categorical_semantics}{Categorical semantics}\dotfill \pageref*{categorical_semantics} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{traced monoidal category} axiomatizes the structure on a [[monoidal category]] for it to have a sensible notion of [[trace]] the way it exists canonically in [[compact closed categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The original definition due to (\hyperlink{JoyalStreetVerity96}{Joyal-Street-Verity 96}) is stated in the general setting of [[balanced monoidal categories]]. Here we give just the slightly simpler formulation for the case of symmetric monoidal categories (\href{Hasegawa97}{Hasegawa 1997}). A [[symmetric monoidal category]] $(C,\otimes,1,b)$ (where $b$ is the symmetry) is said to be \textbf{traced} if it is equipped with a natural family of functions \begin{displaymath} Tr_{A,B}^X : C(A \otimes X, B\otimes X) \to C(A,B) \end{displaymath} satisfying three axioms: \begin{itemize}% \item \textbf{Vanishing:} $Tr_{A,B}^1(f) = f$ (for all $f : A \to B$) and $Tr_{A,B}^{X\otimes Y}(f) = Tr_{A,B}^X(Tr_{A\otimes X,B\otimes X}^Y(f))$ (for all $f : A \otimes X \otimes Y \to B \otimes X \otimes Y$) \item \textbf{Superposing:} $Tr_{C\otimes A,C\otimes B}^X(id_C \otimes f) = id_C \otimes Tr_{A,B}^X(f)$ (for all $f : A \otimes X \to B \otimes X$) \item \textbf{Yanking:} $Tr_{X,X}^X(b_{X,X}) = id_X$ \end{itemize} In [[string diagrams]], the trace $Tr(f) : A \to B$ of a morphism $f : A \otimes X \to B \otimes X$ is visualized by wrapping the outgoing wire representing $X$ to the incoming wire representing $X$, thus ``tying a loop'' in the diagram of $f$. The three axioms above (as well as the naturality conditions) then all have natural graphical interpretations (see \hyperlink{JoyalStreetVerity96}{Joyal-Street-Verity 96} or \href{Hasegawa97}{Hasegawa 1997}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToCompactClosedCategories}{}\subsubsection*{{Relation to compact closed categories}}\label{RelationToCompactClosedCategories} Every [[compact closed category]] is equipped with a canonical trace defined by \begin{displaymath} Tr_{A,B}^X(f) = A \overset{id\otimes \eta}{\to} A \otimes X \otimes X^* \overset{f \otimes id}{\to} B \otimes X \otimes X^* \overset{id \otimes \varepsilon'}{\to} B \end{displaymath} where $\eta$ is a unit and $\varepsilon'$ is a counit of appropriate [[adjunctions]] (note that the symmetry makes the dual $X^*$ both a right and left adjoint of $X$: the adjunctions are ambidextrous). Conversely, given a traced monoidal category $\mathcal{C}$, there is a [[free construction]] completion of it to a [[compact closed category]] $Int(\mathcal{C})$ (\hyperlink{JoyalStreetVerity96}{Joyal-Street-Verity 96}): the objects of $Int(\mathcal{C})$ are pairs $(A^+, A^-)$ of objects of $\mathcal{C}$, a morphism $(A^+ , A^-) \to (B^+ , B^-)$ in $Int(\mathcal{C})$ is given by a morphism of the form $A^+\otimes B^- \longrightarrow A^- \otimes B^+$ in $\mathcal{C}$, and [[composition]] of two such morphisms $(A^+ , A^-) \to (B^+ , B^-)$ and $(B^+ , B^-) \to (C^+ , C^-)$ is given by [[trace|tracing out]] $B^-$ from the composite \begin{displaymath} A^+ \otimes B^- \otimes C^- \xrightarrow{f\otimes 1} A^- \otimes B^+ \otimes C^- \xrightarrow{1\otimes g} A^- \otimes B^- \otimes C^+. \end{displaymath} Note that $\mathcal{C}$ embeds [[fully faithful functor|fully-faithfully]] in $Int(\mathcal{C})$ by sending $A$ to $(A,I)$, where $I$ is the unit object of the monoidal structure. \hypertarget{in_cartesian_monoidal_categories}{}\subsubsection*{{In cartesian monoidal categories}}\label{in_cartesian_monoidal_categories} For a [[cartesian monoidal category]], the existence of a trace operator is equivalent to the existence of a ``parameterized'' [[fixed point]] operator satisfying certain properties (\href{Hasegawa97}{Hasegawa 1997}). \hypertarget{categorical_semantics}{}\subsubsection*{{Categorical semantics}}\label{categorical_semantics} Traced monoidal categories serve as an ``operational'' [[categorical semantics]] for [[linear logic]], known as \emph{[[Geometry of Interactions]]}. See there for more. In this context the free compact closure $Int(\mathcal{C})$ from \href{RelationToCompactClosedCategories}{above} is sometimes called the \emph{Geometry of Interaction construction} and denoted $\mathcal{G}(\mathcal{C})$ (\href{AbramskyHaghverdiScott02}{Abramsky-Haghverdi-Scott 02, def. 2.6}). \hypertarget{references}{}\subsection*{{References}}\label{references} The concept was introduced in \begin{itemize}% \item [[André Joyal]], [[Ross Street]], [[Dominic Verity]], \emph{Traced monoidal categories}, Math. Proc. Camb. Phil. Soc. (1996), 119, 447 (\href{http://sci-prew.inf.ua/v119/3/S0305004100074338.pdf}{pdf}) \end{itemize} A characterization of trace structures on cartesian monoidal categories is given in \begin{itemize}% \item [[Masahito Hasegawa]], \emph{Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi}, Proc. 3rd International Conference on Typed Lambda Calculi and Applications (TLCA 1997). Springer LNCS1210, 1997 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.31}{citeseer}) \end{itemize} The equivalence between traces and parameterized fixed point operators appears as Theorem 3.1 (the author notes that this theorem was also proved independently by [[Martin Hyland]]). Comprehensive discussion as a source for [[categorical semantics]] of the [[Geometry of Interactions]] is in \begin{itemize}% \item [[Samson Abramsky]], [[Esfandir Haghverdi]], [[Philip Scott]], \emph{Geometry of Interaction and Linear Combinatory Algebras}. MSCS, vol. 12(5), 2002, 625-665, CUP (2002) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7818}{citeseer}) \end{itemize} [[!redirects traced monoidal categories]] \end{document}