\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{transgression of bundle gerbes} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{transgression_as_a_functor}{Transgression as a functor}\dotfill \pageref*{transgression_as_a_functor} \linebreak \noindent\hyperlink{application_spin_structures_and_loop_space_orientation}{Application: Spin structures and loop space orientation}\dotfill \pageref*{application_spin_structures_and_loop_space_orientation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} Let $X$ be a [[smooth manifold]], Write $L X = C^\infty(S^1,X)$ for the [[free loop space object|free loop space]]. then [[transgression]] gives a map on [[cohomology]] \begin{displaymath} \tau : H^k(X) \to H^{k-1}(L X) \end{displaymath} \textbf{Example} $\mathbb{Z}_2$-coefficients, $k = 2$ \begin{displaymath} \itexarray{ H^2(X, \mathbb{Z}_2) &\stackrel{\tau}{\to}& H^1(L X, \mathbb{Z}_2) \\ \xi &\mapsto& \tau(\xi) } \end{displaymath} where $\xi$ is the second [[Stiefel-Whitney class]] we have that $X$ has [[spin structure]] precisely if $\xi = 0$ is the trivial class. This implies of course that also $\tau(\xi)$ vanishes. Atiyah showed that if the [[fundamental group]] $\pi_1(X) = 1$ of $X$ vanishes, i.e. if $X$ is a [[simply connected space]], that the also the converse holds: $X$ is spin if $\tau(\xi)$ vanishes in the cohomology of the loop space. \textbf{Questions} \begin{enumerate}% \item What is the relation between $\xi$ and $\tau(\xi)$ in general, that would make $\tau$ a bijection. \item What are relation between trivializations of $\xi$ and those of $\tau(\xi)$ that would make $\tau$ a [[functor]] -- such that this makes transgression an [[equivalence of categories]]. \end{enumerate} \hypertarget{transgression_as_a_functor}{}\subsection*{{Transgression as a functor}}\label{transgression_as_a_functor} Let $A$ be an [[abelian group|abelian]] [[Lie group]]. Write $H^2(X,A)$ for the [[abelian sheaf cohomology]]. we want to realize this as the connected components of a [[2-groupoid]] $Grb_A^\nabla(X)$ of [[bundle gerbe]]s with connection on $X$. Similarly we want to refine $H^1(L X, A)$ to a groupoid $Bun_A^\nabla(L X)$ of [[connection on a bundle|connections]] on smooth $A$-[[principal bundle]]s. [[Jean-Luc Brylinski]] and MacLaughlin define a [[functor]] \begin{displaymath} L : Grb_{A}^\nabla(X) \to Bun_A^\nabla(L X) \,. \end{displaymath} by \begin{displaymath} \mathcal{G} \mapsto L \mathcal{G}|_{\beta} := Hom_{Grb_A^\nabla(S^1)}(\beta^* \mathcal{G}, I_0) \end{displaymath} for $\beta \in L X$ and where $I_0$ denotes the trivial gerbe on the circle. We want to understand the image of this transgression map, i.e. to characterize those bundles over $L X$ that can be obtained by transgression of a gerbe on $X$. \textbf{Definition} Let $P$ be an $A$-[[principal bundle]] over $L X$, then a \textbf{fusion product} on $P$ is a bundle [[isomorphism]] $\lambda$ that is [[fiber]]wise given for a triple of paths \begin{displaymath} \gamma_i : x \to y \,,\;\;\;\;\; i \in \{1,2,3\} \end{displaymath} \begin{displaymath} \lambda_{\gamma_1, \gamma_2,\gamma_3} : P_{\bar\gamma_2 \star \gamma_1} \otimes P_{\bar \gamma_3 \star \gamma_2} \to P_{\bar \gamma_3 \star \gamma_1} \end{displaymath} Brylinske-MacLaughlin have a similar fusion product but over figur-8s of paths. This however gives associativity only up to homotopy. Here we are aiming for a product that is strictly associative. \textbf{Definition} A connection on the fusion bundle $(P,\lambda)$ is called \begin{enumerate}% \item \textbf{compactible} if $\lambda$ is connection-preserving; \item \textbf{symmetrizing}, if \begin{displaymath} R_\pi(\lambda(q_1 \otimes q_2)) = \lambda(R_\pi(q_2) \otimes R_\pi(q_1)) \,, \end{displaymath} where $R_\pi$ is a lift of the \begin{displaymath} \itexarray{ P &\stackrel{}{\to}& P \\ \downarrow && \downarrow \\ L X &\stackrel{r_\pi}{\to}& L X } \end{displaymath} lifts the loop rotation operation by an angle $\pi$ from loop space to the bundle over loop space. We can take $R$ to be the [[parallel transport]] of the connection on loop space along the canonical path in loop space that connects a loop to its rotated loop. \item \textbf{superficial} (German: \emph{oberfl\"a{}chlich} -- this is a joke with translations) if it behaves like a surface holonomy in that \begin{enumerate}% \item if $\phi \in L L X$, $\tilde \phi : S^1 \times S^1 \to X$ has rank one, then $Hol_P(\phi) = 1$; \item if $\phi_1, \phi_2 \in L L X$ such that $\tilde \phi_1, \tilde \phi_2$ are rank-2-homotopic (i.e. think homotopic) then $Hol_p(\phi_1) = Hol_p(\phi_2)$. \end{enumerate} \end{enumerate} \textbf{Definition} An $A$-\textbf{fusion bundle} with connection over $L X$ is an $A$-[[nLab:principal bundle]] over $L X$ with fusion product and compatible, symmetrizing and superficial connection. \textbf{Lemma} Transgression lifts \begin{displaymath} \itexarray{ Grb_A^\nabla(X) &&\stackrel{\tilde K}{\to}&& FusBund_A^\nabla(L X) \\ & {}_{\mathllap{L}}\searrow && \swarrow_{\mathrlap{forget}} \\ && Bun_A^\nabla(L X) } \end{displaymath} \textbf{Theorem} Lifted transgression $\tilde L$ is an equivalence of categories \hypertarget{application_spin_structures_and_loop_space_orientation}{}\subsection*{{Application: Spin structures and loop space orientation}}\label{application_spin_structures_and_loop_space_orientation} Assume $\mathcal{G}$ is the $\mathbb{Z}_2$-[[lifting gerbe]] for [[spin structure]] on $X$ whose characteristic class is \begin{displaymath} [\mathcal{G}] = \xi \in H^3(X, \mathbb{Z}_2) \end{displaymath} the [[Stiefel-Whitney class]] of $X$. So [[spin structure]]s on $X$ are in corresppndence with trivializations of $\mathcal{G}$. On the other hand we have that [[orientation]]s of $L X$ correspond to [[section]]s of $L \mathcal{G}$. Inside there are the fusion preserving sections, which by the above are equivalent to trivializations of $\mathcal{G}$. So we find that in general [[spin structure]]s on $X$ are not in bijection to just all orientations of $L X$, but precisely ot the fusion-compatible ones. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Konrad Waldorf]], \emph{Transgression to Loop Spaces and its Inverse} \emph{I: Diffeological Bundles and Fusion Maps} (\href{http://arxiv.org/abs/0911.3212}{arXiv:0911.3212}) \emph{II: Gerbes and Fusion Bundles with Connection} (\href{http://arxiv.org/abs/1004.0031}{arXiv:1004.0031}) \end{itemize} \end{document}