\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{transgression of differential forms} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{preliminaries_on_smooth_sets}{Preliminaries on smooth sets}\dotfill \pageref*{preliminaries_on_smooth_sets} \linebreak \noindent\hyperlink{via_parameterized_integration_of_differential_forms}{Via parameterized integration of differential forms}\dotfill \pageref*{via_parameterized_integration_of_differential_forms} \linebreak \noindent\hyperlink{via_pullback_along_the_evaluation_map}{Via pullback along the evaluation map}\dotfill \pageref*{via_pullback_along_the_evaluation_map} \linebreak \noindent\hyperlink{TransgressionOfVariationalDifferentialForms}{Transgression of variational differential forms}\dotfill \pageref*{TransgressionOfVariationalDifferentialForms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelativeTransgressionOverManifoldsWithBoundary}{Relative transgression over manifolds with boundary}\dotfill \pageref*{RelativeTransgressionOverManifoldsWithBoundary} \linebreak \noindent\hyperlink{variational_transgression_picks_out_the_vertical_differential_forms}{Variational transgression picks out the vertical differential forms}\dotfill \pageref*{variational_transgression_picks_out_the_vertical_differential_forms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{GaugeCouplingActionFunctionalOfChargedParticle}{Gauge coupling action functional of charged particle}\dotfill \pageref*{GaugeCouplingActionFunctionalOfChargedParticle} \linebreak \noindent\hyperlink{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{Transgression of Killing form to symplectic form of Chern-Simons theory}\dotfill \pageref*{TransgressionOfKillingFormToSymplecticFormOfChernSimons} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[differential form]] $\omega$ of degree $n$ on some [[smooth space]] $X$ and given a [[closed manifold|closed]] [[smooth manifold]] $\Sigma$ of [[dimension]] $k \leq n$, then there is canonically induced a differential form $\tau_\Sigma \omega$ of degree $n-k$ on the [[mapping space]] $[\Sigma,X]$: its restriction to any smooth family $\Phi_{(-)}$ of smooth functions $\Phi_u \colon \Sigma \to X$ is the result of first forming the [[pullback of differential forms]] of $\omega$ along $\Phi_{(-)}$ and then forming the [[integration of differential forms]] of the result over $\Sigma$: \begin{displaymath} \tau_{\Sigma} \omega\vert_{\Phi_{(-)}} \coloneqq \int_\Sigma (\Phi_{(-)})^\ast \omega \,. \end{displaymath} This differential form $\tau_\Sigma \omega$ on the mapping space is called the \emph{[[transgression]]} of $\omega$ with respect to $\Sigma$ This construction has a variety of immediate generalizations, for instance $\Sigma$ may have [[manifold with boundary|boundary]] and [[manifold with corners|corners]], and it may be a [[supermanifold]] and/or a [[formal manifold]]; and the [[mapping space]] may be generalized to a [[space of sections]] of a given [[fiber bundle]]. Finally, the construction also generalizes to coefficients richer than differential forms, such as [[cocycles]] in [[differential cohomology]], but this is no longer the topic of the present entry. Important examples of transgression of differential forms appear in [[Lagrangian field theory]] (in the sense of [[physics]]) defined by a [[Lagrangian density|Lagrangian form]] on the [[jet bundle]] of a [[field bundle]]. Here the transgression of the Lagrangian itself (along [[jet prolongations]] of [[field (physics)|fields]]) is the corresponding \emph{[[action functional]]}, the transgression of its [[Euler-Lagrange operator|Euler-Lagrange variational derivative]] is the 1-form whose vanishing is the \emph{[[equations of motion]]} and the transgression of the induced [[pre-symplectic current]] is the \emph{[[pre-symplectic form]] on the [[covariant phase space]]} of the field theory. These examples are discussed below at \emph{\hyperlink{TransgressionOfVariationalDifferentialForms}{Transgression of variational differential forms}}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are two definitions of transgression of differential forms: A traditional formulation is def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} below, which transgresses by [[pullback of differential forms]] along the [[evaluation map]], followed by [[integration of differential forms]]. Another definition is useful, which makes more use of the existence of smooth classifying spaces for differential forms in [[smooth sets]], this we consider as def. \ref{ParameterizedIntegrationOfDifferentialForms} below. That these two definitions are indeed equivalent is the content of prop. \ref{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces} below \hypertarget{preliminaries_on_smooth_sets}{}\subsubsection*{{Preliminaries on smooth sets}}\label{preliminaries_on_smooth_sets} Since the concept of transgression of differential forms involves [[mapping spaces]] between, in particular, [[smooth manifolds]], it is most conveniently formulated in terms of the concept of [[generalized smooth spaces]] called \emph{[[smooth sets]]}. For the following discussion we assume background on [[smooth sets]] as introduced in \begin{itemize}% \item \emph{[[geometry of physics -- smooth sets]]} \item \emph{[[geometry of physics -- differential forms]]}. \end{itemize} (This entry itself here overlaps with \emph{[[geometry of physics -- integration]]}, where more background may be found.) Recall form the discussion there that a [[smooth set]] $X$ is \emph{defined} by specifying, in a consistent way, what counts as a smooth functions $U \to X$ from a [[Cartesian space]] $U$ (a ``plot'' of $X$). Given two smooth sets $X$ and $Y$ then a [[smooth function]] $f \;\colon\; X \longrightarrow Y$ is a function that takes plots $U \overset{\phi}{\to} X$ of $X$ to plots $f \circ \phi \colon U \to Y$ of $Y$. A key example of a smooth set which is in general not a [[smooth manifold]] is the [[mapping space]] $[X,Y]$ between two smooth sets $X$ and $Y$, hence the set of all smooth functions $X \to Y$ equipped with a smooth structure itself. Namely a plot $\phi_{(-)} \colon U \to [X,Y]$ is defined to be a smooth function $\phi_{(-)}(-) \colon U \times X \to Y$ out of the [[Cartesian product]] of $U$ with $X$ to $Y$, hence a ``U-parameterized smooth family of smooth functions''. An example of a smooth set which is far from being a smooth manifold is for $n \in \mathbb{N}$ the smooth set $\mathbf{\Omega}^n$ which is the ``smooth [[classifying space]]'' for [[differential n-forms]], defined by the rule that a smooth function $\phi \colon U \to \mathbf{\Omega}^n$ is equivalently a smooth differential $n$-form on $U$ (to be thought of as the [[pullback of differential forms|pullback]] of a ``universal $n$-form'' on $\mathbf{\Omega}^n$ along $\phi$). It follows from this in particular that for $X$ any [[smooth manifold]] then smooth functions $X \to \mathbf{\Omega}^n$ are equivalent to smooth $n$-forms on $X$. Accordingly we may say that for $X$ any [[smooth set]] (which may be far from being a smooth manifold) then a differential $n$-form on $X$ is equivalently a smooth function $X \to \mathbf{\Omega}^n$. Under this identification the operation of [[pullback of differential forms]] along some smooth function $f \colon Y \to X$ is just [[composition]] of smooth functions $f^\ast \omega \colon Y \overset{f}{\to} X \overset{\omega}{\to} \mathbf{\Omega}^n$. These examples may be combined: the [[mapping space]] $[\Sigma, \mathbf{\Omega}^n]$ is a kind of smooth classifying space for differential forms \emph{on} $\Sigma$: a smooth function $\omega_{(-)} \colon U \to [\Sigma,\mathbf{\Omega}^n]$ into this space is, by the above, a [[differential n-form]] on the [[Cartesian product]] $U \times \Sigma$. (There is a smooth space that has more right to be called ``the'' classifying space of differential $n$-foms on $\Sigma$, namely the [[concretification]] $\sharp_1 [\Sigma, \mathbf{\Omega}^n]$, but for the discussion of trangression actually the unconcretified space is the right one to use.) \hypertarget{via_parameterized_integration_of_differential_forms}{}\subsubsection*{{Via parameterized integration of differential forms}}\label{via_parameterized_integration_of_differential_forms} \begin{defn} \label{ParameterizedIntegrationOfDifferentialForms}\hypertarget{ParameterizedIntegrationOfDifferentialForms}{} \textbf{(parameterized [[integration of differential forms]])} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then we write \begin{displaymath} \int_{\Sigma} \;\colon\; [\Sigma_k, \mathbf{\Omega}^n] \longrightarrow \mathbf{\Omega}^{n-k} \end{displaymath} for the [[smooth function]] which takes a plot $\omega_{(-)} \colon U \to [\Sigma, \mathbf{\Omega}^k]$, hence equivalently a differential $n$-form $\omega_{(-)}(-)$ on $U \times \Sigma$ to the result of [[integration of differential forms]] over $\Sigma$: \begin{displaymath} \int_{\Sigma} \omega_{(-)}(-) \coloneqq \int_\Sigma \omega_{(-)} \,. \end{displaymath} \end{defn} \begin{defn} \label{TransgressionOfDifferentialFormsToMappingSpaces}\hypertarget{TransgressionOfDifferentialFormsToMappingSpaces}{} \textbf{(transgression of differential forms to [[mapping spaces]])} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then the operation of \emph{transgression of differential $n$-forms} on $X$ with respect to $\Sigma$ is the [[function]] \begin{displaymath} \tau_\Sigma \coloneqq \int_\Sigma [\Sigma,-] \;\colon\; \Omega^n(X) \to \Omega^{n-k}([\Sigma,X]) \end{displaymath} from differential $n$-forms on $X$ to differential $n-k$-forms on the [[mapping space]] $[\Sigma,X]$ which takes the differential form corresponding to the smooth function \begin{displaymath} (X \stackrel{\omega}{\to} \Omega^n) \in \Omega^n(X) \end{displaymath} to the differential form corresponding to the following composite smooth function: \begin{displaymath} \tau_\Sigma \omega \coloneqq \int_{\Sigma} [\Sigma,\omega] \;\colon\; [\Sigma, X] \stackrel{[\Sigma, \omega]}{\to} [\Sigma, \Omega^n] \stackrel{\int_{\Sigma}}{\to} \Omega^{n-k} \,, \end{displaymath} where $[\Sigma,\omega]$ is the [[mapping space]] [[functor]] on [[morphisms]] and $\int_{\Sigma}$ is the parameterized integration of differential forms from def. \ref{ParameterizedIntegrationOfDifferentialForms}. More explicitly in terms of plots this means equivalently the following A plot of the [[mapping space]] \begin{displaymath} \phi_{(-)} \;\colon\; U \to [\Sigma, X] \end{displaymath} is equivalently a [[smooth function]] of the form \begin{displaymath} \phi_{(-)}(-) \;\colon\; U \times \Sigma \to X \,. \end{displaymath} The smooth function $[\Sigma,\omega]$ takes this smooth function to the plot \begin{displaymath} U \times \Sigma \to X \overset{\phi_{(-)}(-)}{\longrightarrow} X \overset{\omega}{\longrightarrow} \mathbf{\Omega}^{n} \end{displaymath} which is equivalently a differential form \begin{displaymath} (\phi_{(-)}(-))^\ast \omega \in \Omega^n(U \times \Sigma) \,. \end{displaymath} Finally the smooth function $\int_\Sigma$ takes this to the result of [[integration of differential forms]] over $\Sigma$: \begin{displaymath} \tau_{\Sigma}\omega\vert_{\phi_{(-)}} \;=\; \int_\Sigma (\phi_{(-)}(-))^\ast \omega \;\in\; \Omega^{n-k}(U) \,. \end{displaymath} \end{defn} \hypertarget{via_pullback_along_the_evaluation_map}{}\subsubsection*{{Via pullback along the evaluation map}}\label{via_pullback_along_the_evaluation_map} \begin{defn} \label{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap}\hypertarget{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap}{} \textbf{(transgression of differential forms to mapping space via evaluation map)} Let \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $n \geq k \in \mathbb{N}$; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$. \end{enumerate} Then the operation of \emph{transgression of differential $n$-forms} on $X$ with respect to $\Sigma$ is the [[function]] \begin{displaymath} \tau_\Sigma \coloneqq \int_\Sigma ev^\ast \;\colon\; \Omega^n(X) \overset{ev^\ast}{\longrightarrow} \Omega^n(\Sigma \times [\Sigma, X]) \overset{\int_\Sigma}{\longrightarrow} \Omega^{n-k}([\Sigma,X]) \end{displaymath} from differential $n$-forms on $X$ to differential $n-k$-forms on the [[mapping space]] $[\Sigma,X]$ which is the [[composition|composite]] of forming the [[pullback of differential forms]] along the [[evaluation map]] $ev \colon [\Sigma, X] \times \Sigma \to X$ with [[integration of differential forms]] over $\Sigma$. \end{defn} \begin{prop} \label{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces}\hypertarget{EquivalenceOfTransgressionOfDifferentialFormsToMappingSpaces}{} The two definitions of transgression of differential forms to mapping spaces from def. \ref{TransgressionOfDifferentialFormsToMappingSpaces} and def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} are equivalent. \end{prop} \begin{proof} We need to check that for all plots $\gamma \colon U \to [\Sigma, X]$ the pullbacks of the two forms to $U$ coincide. For def. \ref{TransgressionOfDifferentialFormsToMappingSpacesViaEvaluationMap} we get \begin{displaymath} \gamma^\ast \int_\Sigma \mathrm{ev}^\ast A = \int_\Sigma (\gamma,\mathrm{id}_\Sigma)^\ast \mathrm{ev}^\ast A \; \in \Omega^n(U) \end{displaymath} Here we recognize in the integrand the pullback along the $( (-)\times \Sigma \dashv [\Sigma,-])$-[[adjunct]] $\tilde \gamma : U \times \Sigma \to \Sigma$ of $\gamma$, which is given by applying the [[left adjoint]] $(-)\times \Sigma$ and then postcomposing with the adjunction counit $\mathrm{ev}$: \begin{displaymath} \itexarray{ U \times \Sigma & \overset{(\gamma, \mathrm{id}_\Sigma)}{\longrightarrow} & [\Sigma,X] \times \Sigma & \overset{\mathrm{ev}}{\longrightarrow} & X } \,. \end{displaymath} Hence the integral is now \begin{displaymath} \cdots = \int_{\Sigma} \tilde \gamma^\ast A \,. \end{displaymath} This is the operation of the top horizontal composite in the following [[natural transformation|naturality square]] for [[adjuncts]], and so the claim follows by its [[commuting diagram|commutativity]]: \begin{displaymath} \itexarray{ \tilde \gamma \in & \mathbf{H}(U \times\Sigma, X) & \overset{\mathbf{H}(U \times \Sigma,A)}{\longrightarrow} & \mathbf{H}(U \times \Sigma, \mathbf{\Omega}^{n+k}) & \overset{\int_\Sigma(U)}{\longrightarrow} & \Omega^n(U) \\ & {}^{\mathllap{\simeq}}\downarrow && {}^{\mathllap{\simeq}}\downarrow && {}^{\mathllap{\simeq}}\downarrow \\ \gamma \in & \mathbf{H}(U,[\Sigma,X]) & \overset{\mathbf{H}(U,[\Sigma,A])}{\longrightarrow} & \mathbf{H}(U,[\Sigma,\mathbf{\Omega}^{n+k}]) & \overset{\mathbf{H}(U,\int_\Sigma)}{\longrightarrow} & \mathbf{H}(U,\mathbf{\Omega}^n) } \end{displaymath} (here we write $\mathbf{H}(-,-)$ for the [[hom functor]] of [[smooth sets]]). \end{proof} \hypertarget{TransgressionOfVariationalDifferentialForms}{}\subsubsection*{{Transgression of variational differential forms}}\label{TransgressionOfVariationalDifferentialForms} An important variant of transgression of differential forms is the transgression of [[variational bicomplex|variational differential forms]] along [[jet prolongation]]. In the following let $\Sigma$ be a fixed [[smooth manifold]]. We will refer to this as ``[[spacetime]]'', but for the present purpose it may be an smooth manifold without further structure. \begin{defn} \label{Fields}\hypertarget{Fields}{} \textbf{([[field (physics)|fields]] and their [[space of histories]])} Given a [[spacetime]] $\Sigma$, then a \emph{[[type]] of fields} on $\Sigma$ is a [[smooth set|smooth]] [[fiber bundle]] \begin{displaymath} \itexarray{E \\ \downarrow^{\mathrlap{fb}} \\ \Sigma } \end{displaymath} called the \emph{[[field bundle]]}, Given a type of fields on $\Sigma$ this way, then a \emph{[[field (physics)|field]] [[trajectory]]} (or \emph{field history}) of that type on $\Sigma$ is a smooth [[section]] of this [[bundle]], namely a [[smooth function]] of the form \begin{displaymath} \Phi \colon \Sigma \longrightarrow E \end{displaymath} such that composed with the [[projection]] map it is the [[identity function]], i.e. such that \begin{displaymath} fb \circ \Phi = id \phantom{AAAAAAA} \itexarray{ && E \\ & {}^{\mathllap{\Phi}}\nearrow & \downarrow^{\mathrlap{fb}} \\ \Sigma & = & \Sigma } \,. \end{displaymath} The corresponding \emph{field [[space of histories]]} is the [[smooth set|smooth]] [[space of sections|space of all these]], to be denoted \begin{displaymath} \Gamma_\Sigma(E) \in \mathbf{H} \,. \end{displaymath} This is a [[smooth set]] by declaring that a smooth family $\Phi_{(-)}$ of field configurations, parameterized over any [[Cartesian space]] $U$ is a smooth function \begin{displaymath} \itexarray{ U \times \Sigma &\overset{\Phi_{(-)}(-)}{\longrightarrow}& E \\ (u,x) &\mapsto& \Phi_u(x) } \end{displaymath} such that for each $u \in U$ we have $p \circ \Phi_{u}(-) = id_\Sigma$, i.e. \begin{displaymath} \itexarray{ && E \\ & {}^{\mathllap{\Phi_{(-)}(-)}}\nearrow & \downarrow^{\mathrlap{fb}} \\ U \times \Sigma &\underset{pr_2}{\longrightarrow}& \Sigma } \,. \end{displaymath} More generally, let $S \hookrightarrow \Sigma$ be a [[submanifold]] of spacetime. We write $N_\Sigma(S) \hookrightarrow \Sigma$ for its [[infinitesimal neighbourhood]] in $\Sigma$. If $E \overset{fb}{\to} \Sigma$ is a [[field bundle]] then the \emph{[[space of histories]] of fields restricted to $S$}, to be denoted \begin{displaymath} \Gamma_{S}(E) \coloneqq \Gamma_{N_\Sigma(S)}( E\vert_{N_\Sigma S} ) \in \mathbf{H} \end{displaymath} is the [[space of sections]] restricted to the [[infinitesimal neighbourhood]] $N_\Sigma(S)$. There is a canonical [[evaluation]] [[smooth function]] \begin{equation} ev_S \;\colon\; N_\Sigma S \times \Gamma_{S}(E) \longrightarrow E \label{FieldEvaluation}\end{equation} which takes a [[pair]] consisting of an [[generalized element|element]] in $N_\Sigma S$ and a field configuration to the value of the field configuration at that point. \end{defn} \begin{defn} \label{SpacetimeSupport}\hypertarget{SpacetimeSupport}{} \textbf{(spacetime support)} Let $E \overset{fb}{\to} \Sigma$ be a [[field bundle]] over a [[spacetime]] $\Sigma$, with induced [[jet bundle]] $J^\infty_\Sigma(E)$ For every [[subset]] $S \subset \Sigma$ let \begin{displaymath} \itexarray{ J^\infty_\Sigma(E)\vert_S &\overset{\iota_S}{\hookrightarrow}& J^\infty_\Sigma(E) \\ \downarrow &(pb)& \downarrow \\ S &\hookrightarrow& \Sigma } \end{displaymath} be the corresponding restriction of the [[jet bundle]] of $E$. The \emph{spacetime support} $supp_\Sigma(A)$ of a [[differential form]] $A \in \Omega^\bullet(J^\infty_\Sigma(E))$ on the [[jet bundle]] of $E$ is the [[topological closure]] of the maximal subset $S \subset \Sigma$ such that the restriction of $A$ to the jet bundle restrited to this subset vanishes: \begin{displaymath} supp_\Sigma(A) \coloneqq Cl( \{ x \in \Sigma | \iota_{\{x\}^\ast A = 0} \} ) \end{displaymath} We write \begin{displaymath} \Omega^{r,s}_{\Sigma,cp}(E) \coloneqq \left\{ A \in \Omega^{r,s}_\Sigma(E) \;\vert\; supp_\Sigma(A) \, \text{is compact} \right\} \;\hookrightarrow\; \Omega^{r,s}_\Sigma(E) \end{displaymath} for the subspace of differential forms on the jet bundle whose spacetime support is a [[compact subspace]]. \end{defn} \begin{defn} \label{TransgressionOfVariationalDifferentialFormsToConfigrationSpaces}\hypertarget{TransgressionOfVariationalDifferentialFormsToConfigrationSpaces}{} \textbf{(transgression of variational differential forms to [[field (physics)|field]] [[space of histories]])} Let $E \overset{fb}{\to} \Sigma$ be a [[field bundle]] over a [[spacetime]] $\Sigma$ (def. \ref{Fields}), with induced [[jet bundle]] $J^\infty_\Sigma(E)$ For $\Sigma_r \hookrightarrow \Sigma$ be a submanifold of [[spacetime]] of dimension $r \in \mathbb{N}$, then \emph{transgression of variational differential forms to $\Sigma_r$} is the function \begin{displaymath} \tau_{\Sigma_r} \;\colon\; \Omega^{r,\bullet}_{\Sigma,cp}(E) \overset{ }{\longrightarrow} \Omega^\bullet\left( \Gamma_{\Sigma_r}(E) \right) \end{displaymath} which sends a differential form $A \in \Omega^{r,\bullet}_{\Sigma,cp}(E)$ to the differential form $\tau_{\Sigma_r} \in \Omega^\bullet(\Gamma_{\Sigma_r}(E))$ which to a smooth family on field configurations \begin{displaymath} \Phi_{(-)} \;\colon\; U \times N_\Sigma \Sigma_r \longrightarrow E \end{displaymath} assigns the differential form given by first forming the [[pullback of differential forms]] along the family of [[jet prolongation]] $j^\infty_\Sigma(\Phi_{(-)})$ followed by the [[integration of differential forms]] over $\Sigma_r$: \begin{displaymath} (\tau_{\Sigma}A)_{\Phi_{(-)}} \;\coloneqq\; \int_{\Sigma_r} (j^\infty_\Sigma(\Phi_{(-)}))^\ast \;\in\; \Omega^\bullet(U) \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelativeTransgressionOverManifoldsWithBoundary}{}\subsubsection*{{Relative transgression over manifolds with boundary}}\label{RelativeTransgressionOverManifoldsWithBoundary} \begin{prop} \label{}\hypertarget{}{} \textbf{(relative transgression over [[manifolds with boundary]])} \begin{enumerate}% \item $X$ be a [[smooth set]]; \item $\Sigma_k$ be a [[compact topological space|compact]] [[smooth manifold]] of [[dimension]] $k$ with [[manifold with boundary|boundary]] $\partial \Sigma$ \item $n \geq k \in \mathbb{N}$; \item $\omega \in \Omega^n_{X}$ a [[closed differential form]]. \end{enumerate} Write \begin{displaymath} (-)\vert_{\partial \Sigma} \;\coloneqq\; [\partial \Sigma \hookrightarrow \Sigma, X] \;\colon\; [\Sigma, X] \longrightarrow [\partial \Sigma, X] \end{displaymath} for the smooth function that restricts smooth functions on $\Sigma$ to smooth functions on the [[boundary]] $\partial \Sigma$. Then the operations of transgression of differential forms (def. \ref{TransgressionOfDifferentialFormsToMappingSpaces}) to $\Sigma$ and to $\partial \Sigma$, respectively, are related by \begin{displaymath} d \left( \tau_{\Sigma}(\omega) \right) = (-1)^{k+1} ((-)\vert_{\partial \Sigma})^\ast \tau_{\partial \Sigma}(\omega) \phantom{AAAAAAAA} \itexarray{ [\Sigma, X] &\overset{ \tau_{\Sigma}(\omega) }{\longrightarrow}& \mathbf{\Omega}^{n-k} \\ {}^{\mathllap{(-)\vert_{\partial \Sigma} }}\downarrow && \downarrow^{\mathrlap{ (-1)^{k+1} d}} \\ [\partial \Sigma, X] &\underset{ \tau_{\partial\Sigma}(\omega) }{\longrightarrow}& \mathbf{\Omega}^{n-k+1} } \,. \end{displaymath} In particular this means that if the compact manifold $\Sigma$ happens to have no boundary (is a [[closed manifold]]) then transgression over $\Sigma$ takes closed differential forms to closed differential forms. \end{prop} \begin{proof} Let $\phi_{(-)}(-) \colon U \times \Sigma \to X$ be a plot of the mapping space $[\Sigma, X]$. Notice that the [[de Rham differential]] on the [[Cartesian product]] $U \times \Sigma$ decomposes as \begin{displaymath} d = d_U + d_\Sigma \,. \end{displaymath} Now we compute as follows: \begin{displaymath} \begin{aligned} d \tau_{\Sigma}\omega\vert_{\phi_(-)} & = d_U \int_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma d_U (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma (d - d \Sigma) (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma d (\phi_{(-)}(-))^\ast \omega - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = (-1)^k \int_\Sigma (\phi_{(-)}(-))^\ast \underset{= 0}{\underbrace{d \omega}} - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = - (-1)^k \int_\Sigma d_\Sigma (\phi_{(-)}(-))^\ast \omega \\ & = -(-1)^k \int_{\partial \Sigma} (\phi_{(-)}(-))^\ast \omega \\ & = -(-1)^k \tau_{\partial \Sigma} \omega \vert_{\phi_{(-)}} \end{aligned} \end{displaymath} where in the second but last step we used [[Stokes' theorem]]. \end{proof} \hypertarget{variational_transgression_picks_out_the_vertical_differential_forms}{}\subsubsection*{{Variational transgression picks out the vertical differential forms}}\label{variational_transgression_picks_out_the_vertical_differential_forms} \begin{example} \label{}\hypertarget{}{} \textbf{(some transgressions of variational differential forms)} We spell out the result transgression of variational differential forms (def. \ref{TransgressionOfVariationalDifferentialFormsToConfigrationSpaces}) of some variational differential forms on the [[jet bundle]] of a trivial vector field bundle to the [[space of histories]] $\Gamma_\Sigma(E)$ of fields (def. \ref{Fields}). We describe the resulting transgressed differential forms restricted to any smooth family of field configurations \begin{displaymath} \Phi_{(-)} \;\colon\; U \times \Sigma \longrightarrow E \,. \end{displaymath} Let $b \in C^\infty_{cp}(\Sigma)$ be any [[bump function]] on spacetime. Its product with the [[volume form]] (as in example \ref{BasicFactsAboutVarationalCalculusOnJetBundleOfTrivialVectorBundle}) is then a horizontal $p+1$-form on the jet bundle with compact spacetime support. \begin{displaymath} b dvol_\Sigma \in \Omega^{0,0}_{\Sigma,cp}(E) \end{displaymath} The transgression of this 0-form to the [[space of histories]] of fields \begin{displaymath} \tau_\Sigma (b dvol_\Sigma) \in \Omega^0( \Gamma_\Sigma(E) ) \end{displaymath} is the differential form on $\Gamma_\Sigma(E)$ which restricted to the given family of field configurations $\Phi_{(-)} \colon u \mapsto \Phi_u$ yields the function \begin{displaymath} \tau_\Sigma (b dvol_\Sigma)\vert_\Phi \colon u \mapsto \int_\Sigma b dvol_\Sigma \end{displaymath} which is simply the constant function with value the integral of $b$ against the given volume form. The constancy of this function is due to the fact that $b dvol_\Sigma$ does not depend on the field variables. So consider next the horizontal $(p+1)$-form \begin{displaymath} \phi^a \, b dvol_\Sigma \; \in \Omega^{p+1,0}( E ) \,. \end{displaymath} Its transgression is the function \begin{displaymath} \tau_\Sigma( \phi^a \, b dvol_\Sigma )_\Phi \;=\; \left( u \mapsto \int_\Sigma \Phi^a_{(u)}(x) b(x) dvol_\Sigma(x) \right) \end{displaymath} which assigns to a given field configuration $\Phi_{u}$ in the family the value its $a$-component integrated against $b dvol_\Sigma$. Similarly the transgression of $\phi^a_{,\mu}$ is the function \begin{displaymath} \tau_\Sigma( \phi^a_{,\mu} \, b dvol_\Sigma )_\Phi \;=\; \left( u \mapsto \int_\Sigma \frac{\partial \Phi^a_{u}}{\partial x^\mu} b(x) dvol_\Sigma(x) \right) \end{displaymath} which assigns to a field configuration the integral of the value of the $\mu$th derivative of its $a$th component against $b dvol_\Sigma$. Next consider a horizontally exact variational form \begin{displaymath} d \alpha \in \Omega^{p+1,s}_{\Sigma,cp}(E) \,. \end{displaymath} By prop. \ref{PullbackAlongJetProlongationIntertwinesHorizontalDerivative} the pullback of this form along the jet prolongation of fields is exact in the $\Sigma$-direction: \begin{displaymath} (j^\infty_\Sigma\Phi_{(-)})^\ast(d \alpha \wedge b dvol_\Sigma) = d_\Sigma (j^\infty_\Sigma\Phi_{(-)})^\ast\alpha \wedge b dvol_\Sigma \,, \end{displaymath} (where we write $d = d_U + d_\Sigma$ for the de Rham differential on $U \times \Sigma$). It follows that the integral over $\Sigma$ vanishes. Now let \begin{displaymath} \delta \alpha \phi^a_{,\mu_1 \cdots \mu_k} \, b dvol_\Sigma \in \Omega^{p+1,1}_\Sigma(E) \end{displaymath} be a variational (vertical) differential 1-form. Its [[pullback of differential forms]] along $j^\infty_\Sigma(\Phi_{(-)}) \colon U \times \Sigma \to J^\infty_\Sigma(E)$ has two contributions: one from the variation along $\Sigma$, the other from variation along $U$. By prop. \ref{PullbackAlongJetProlongationIntertwinesHorizontalDerivative}, for \emph{fixed} $u \in U$ the pullback along the jet prolongation vanishes. On the other hand, for fixed $s \in \Sigma$, the pullback of $\mathbf{d} \phi^a_{\mu_1\cdots \mu_k}$ is \begin{displaymath} d_U \frac{ \partial^k \Phi_{(-)}}{\partial x^{\mu^1} \cdots \partial x^{\mu_k}} \end{displaymath} while the pullback of $d \phi^a_{\mu_1\cdots \mu_k}$ vanishes at fixed $\Sigma$. This means that \begin{displaymath} \tau_\Sigma( \delta \phi^a_{,\mu_1 \cdots \mu_k} ) = d \tau_{\Sigma}( \phi^a_{_\mu_1 \cdots \mu_k} ) \end{displaymath} is the de Rham differential (on $U$) of the corresponding function discussed before. In conclusion: Under transgression the variational (vertical) derivative on the jet bundle turns into the ordinary de Rham derivative on the [[space of histories]] of fields. \end{example} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} We discuss some examples and applications: \begin{itemize}% \item \hyperlink{GaugeCouplingActionFunctionalOfChargedParticle}{Gauge coupling action functional of charged particle} \item \hyperlink{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{Transgression of Killing form to symplectic form of Chern-Simons theory} \end{itemize} \hypertarget{GaugeCouplingActionFunctionalOfChargedParticle}{}\subsubsection*{{Gauge coupling action functional of charged particle}}\label{GaugeCouplingActionFunctionalOfChargedParticle} Let $X \in \mathbf{H}$ and consider a [[circle group]]-[[principal connection]] $\nabla \colon X \to \mathbf{B}U(1)_{conn}$ over $X$. By the discussion in \emph{\hyperlink{DiracChargeQuantizationAndElectromagneticField}{Dirac charge quantization and the electromagnetic field}} above this encodes an [[electromagnetic field]] on $X$. Assume for simplicity here that the underlying [[circle principal bundle]] is trivialized, so that then the connection is equivalently given by a differential 1-form \begin{displaymath} \nabla = A \;\colon\; X \to \mathbf{\Omega}^1 \,, \end{displaymath} the \emph{[[electromagnetic potential]]}. Let then $\Sigma = S^1$ be the [[circle]]. The [[transgression]] of the electromagnetic potential to the [[loop space]] of $X$ \begin{displaymath} \int_{S^1} [S^1, A] \;\colon\; [S^1, X] \stackrel{[S^1, A]}{\to} [S^1 , \Omega^1] \stackrel{\int_{S^1}}{\to} \Omega^0 \simeq \mathbb{R} \end{displaymath} is the [[action functional]] for an [[electron]] or other electrically charged [[particle]] in the [[background gauge field]] $A$ is $S_{em} = \int_{S^1} [S^1, A]$. The [[variational calculus|variation]] of this contribution in addition to that of the [[kinetic action]] of the electron gives the \emph{[[Lorentz force]]} law describing the [[force]] exerted by the [[background gauge field]] on the electron. \hypertarget{TransgressionOfKillingFormToSymplecticFormOfChernSimons}{}\subsubsection*{{Transgression of Killing form to symplectic form of Chern-Simons theory}}\label{TransgressionOfKillingFormToSymplecticFormOfChernSimons} Let $\mathfrak{g}$ be a [[Lie algebra]] with binary [[invariant polynomial]] $\langle -,-\rangle \colon \mathfrak{g} \otimes \mathfrak{g} \to \mathbb{R}$. For instance $\mathfrak{g}$ could be a [[semisimple Lie algebra]] and $\langle -,-\rangle$ its [[Killing form]]. In particular if $\mathfrak{g} = \mathfrak{su}(n)$ is a [[matrix Lie algebra]] such as the [[special unitary Lie algebra]], then the Killing form is given by the [[trace]] of the product of two matrices. This pairing $\langle -,-\rangle$ defines a differential 4-form on the [[smooth space]] of [[Lie algebra valued 1-forms]] \begin{displaymath} \langle F_{(-)} \wedge F_{(-)} \rangle \colon \Omega^1(-,\mathfrak{g}) \stackrel{F_{(-)}}{\to} \Omega^2(-, \mathfrak{g}) \stackrel{(-)\wedge (-)}{\to} \Omega^4(-, \mathfrak{g}\otimes \mathfrak{g}) \stackrel{\langle-,-\rangle}{\to} \Omega^4 \end{displaymath} Over a [[coordinate patch]] $U \in$ [[CartSp]] this sends a differential 1-form $A \in \Omega^1(U)$ to the differential 4-form \begin{displaymath} \langle F_A \wedge F_A \rangle \in \Omega^4(U) \,. \end{displaymath} The fact that $\langle -, - \rangle$ is indeed an \emph{[[invariant polynomial]]} means that this indeed extends to a 4-form on the smooth [[groupoid of Lie algebra valued forms]] \begin{displaymath} \langle F_{(-)} \wedge F_{(-)}\rangle \colon \mathbf{B}G_{conn} \to \Omega^4 \,. \end{displaymath} Now let $\Sigma$ be an [[orientation|oriented]] [[closed manifold|closed]] [[smooth manifold]]. The [[transgression]] of the above 4-form to the [[mapping space]] out of $\Sigma$ yields the 2-form \begin{displaymath} \omega \coloneqq \int_{\Sigma} \langle F_{(-)}\wedge F_{(-)}\rangle \colon \mathbf{\Omega}^1(\Sigma,\mathfrak{g}) \hookrightarrow [\Sigma, \mathbf{B}G_{conn}] \stackrel{[\Sigma, \langle F_{(-)}\wedge F_{(-)}\rangle]}{\to} [\Sigma, \Omega^4] \stackrel{\int_{\Sigma}}{\to} \Omega^2 \end{displaymath} to the [[moduli stack]] of [[Lie algebra valued 1-forms]] on $\Sigma$. Over a [[coordinate chart]] $U = \mathbb{R}^n \in$ [[CartSp]] an element $A \in \mathbf{\Omega}^1(\Sigma,\mathfrak{g})(\mathbb{R}^n)$ is a $\mathfrak{g}$-valued 1-form $A$ on $\Sigma \times U$ with no leg along $U$. Its [[curvature]] 2-form therefore decomposes as \begin{displaymath} F_A = F_A^{\Sigma} + \delta A \,, \end{displaymath} where $F_A^{\Sigma}$ is the curvature component with all legs along $\Sigma$ and where \begin{displaymath} \delta A \coloneqq - \sum_{i = 1}^n \frac{\partial}{\partial x^i} A \wedge \mathbf{d}x^i \end{displaymath} is the [[variational calculus|variational]] derivative of $A$. This means that in the 4-form \begin{displaymath} \langle F_A \wedge F_A\rangle = \langle F_A^\Sigma \wedge F_A^\Sigma \rangle + 2 \langle F_A^\Sigma \wedge \delta A\rangle + \langle \delta A \wedge \delta A\rangle \in \Omega^4(\Sigma \times U) \end{displaymath} only the last term gives a 2-form contribution on $U$. Hence we find that the transgressed 2-form is \begin{displaymath} \omega = \int_\Sigma \langle \delta A \wedge \delta A\rangle \colon \mathbf{\Omega}^1(\Sigma, \mathfrak{g}) \to \Omega^2 \,. \end{displaymath} When restricted further to flat forms \begin{displaymath} \mathbf{\Omega^1}_{flat}(\Sigma,\mathfrak{g}) \hookrightarrow \mathbf{\Omega^1}(\Sigma,\mathfrak{g}) \end{displaymath} which is the [[phase space]] of $\mathfrak{g}$-[[Chern-Simons theory]], then this is the corresponding [[symplectic form]] (by the discussion at \emph{\href{Chern-Simons+theory#CovariantPhaseSpace}{Chern-Simons theory -- covariant phase space}}). [[!redirects transgressions of differential forms]] [[!redirects transgression of differential n-forms]] [[!redirects transgressions of differential n-forms]] [[!redirects transgression of variational differential forms]] [[!redirects transgressions of variational differential forms]] \end{document}