\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tropical geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{books_and_lecture_notes}{Books and Lecture Notes}\dotfill \pageref*{books_and_lecture_notes} \linebreak \noindent\hyperlink{collections_of_articles}{Collections of articles}\dotfill \pageref*{collections_of_articles} \linebreak \noindent\hyperlink{papers_and_preprints}{Papers and Preprints}\dotfill \pageref*{papers_and_preprints} \linebreak \noindent\hyperlink{miscellaneous_mo_questions_discussions_etc}{Miscellaneous: MO questions, discussions, etc.}\dotfill \pageref*{miscellaneous_mo_questions_discussions_etc} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Tropical geometry is often thought of as the [[algebraic geometry]] over the [[tropical semiring]]. Many central results are combinatorial in nature, with relations to the (geometry and combinatorics of) polyhedra, [[matroid]]s, [[cluster algebra]]s and toric geometry. Recently it found applications in explaining [[mirror symmetry]] at a more fundamental level (see e.g. \hyperlink{Gross11}{Gross 11}). Tropical algebraic geometry establishes and studies some very general principles to translate algebro-geometric problems into purely combinatorial ones. \emph{Example} In algebraic geometry one often work with polynomials. In tropical geometry, these polynomials are ``tropicalized'' and this turns them into piecewise linear functions. For instance: $f (x, y) = x^2 + y^2-1$. This tropicalizes to $trop(f ) = x^2 \oplus y^2 \oplus 0 = min(2x, 2y, 0)$, and this is a piecewise linear curve. (To see this remember that in the [[tropical semiring]], the sum of two numbers is their minimum, and their product is their sum. $x^2 = x\oplus x$, $y^2 = y\oplus y$ and so $x^2+y^2$ converts to $min(2x,2y)$. The 0 will remain mysterious for the moment. (If you cannot wait look at the AARMS notes listed below.)) \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{books_and_lecture_notes}{}\subsubsection*{{Books and Lecture Notes}}\label{books_and_lecture_notes} Textbook accounts/lecture notes include \begin{itemize}% \item [[Diane Maclagan]], [[Bernd Sturmfels]] \emph{Introduction to tropical geometry}, \href{http://homepages.warwick.ac.uk/staff/D.Maclagan/papers/TropicalBook.pdf}{draft book} \item [[Mark Gross]], \emph{Tropical geometry and mirror symmetry}, CBMS regional conf. ser. 114 (2011), based on the CBMS course in Kansas, \href{http://www.ams.org/bookstore-getitem/item=CBMS-114}{AMS book page}, \href{http://www.math.ucsd.edu/~mgross/kansas.pdf}{pdf} \item G. Mikhalkin, \emph{Tropical geometry}, book, early draft, \href{http://www.scribd.com/doc/47771116/Tropical-geometry-Grigory-Mikhalkin}{scribd}; \emph{Tropical geometry and its applications}, Proc. Intern. Congr. Math., V. 2 (Madrid, 2006), Eur. Math. Soc., Z\"u{}rich, 2006, 827--852 \href{http://www.mathunion.org/ICM/ICM2006.2/Main/icm2006.2.0827.0852.ocr.djvu}{djvu} \href{http://www.mathunion.org/ICM/ICM2006.2/Main/icm2006.2.0827.0852.ocr.pdf}{pdf} \item [[Diane Maclagan]], \href{http://homepages.warwick.ac.uk/staff/D.Maclagan/AARMS/AARMSTropical.pdf}{AARMS Tropical Geometry}:lecture notes from a four week graduate summer school on Tropical Geometry held at the University of New Brunswick in July/August 2008 under the auspices of the Atlantic Association for Research in the Mathematical Sciences (AARMS). \item MSRI introductory workshop on tropical geometry \href{http://www.msri.org/web/msri/scientific/workshops/show/-/event/Wm483}{page}, Aug 24-28, 2009 (with videos of the lectures) \item Erwan Brugall\'e{}, Kristin Shaw, \emph{A bit of tropical geometry}, \href{http://arxiv.org/abs/1311.2360}{arxiv/1311.2360} \end{itemize} \hypertarget{collections_of_articles}{}\subsubsection*{{Collections of articles}}\label{collections_of_articles} \begin{itemize}% \item (CM580) Tropical geometry and integrable systems, \href{http://www.ams.org/bookstore-getitem/item=CONM-580}{Contemp. Math. \textbf{580}}, Amer. Math. Soc., Providence, RI, 2012 \item \emph{Tropical and idempotent mathematics}, \href{http://www.mccme.ru/tropical12/Tropics2012final.pdf}{pdf}, proceedings conf. Moscow 2012 \end{itemize} \hypertarget{papers_and_preprints}{}\subsubsection*{{Papers and Preprints}}\label{papers_and_preprints} \begin{itemize}% \item [[Dan Abramovich]], \emph{Moduli of algebraic and tropical curves}, \href{http://arxiv.org/abs/1301.0474}{arxiv/1301.0474} \item [[Dan Abramovich]], Lucia Caporaso, Sam Payne, \emph{The tropicalization of the moduli space of curves}, \href{http://arxiv.org/abs/1212.0373}{arxiv/1212.0373} \item I. Itenberg, G. Mikhalkin, \emph{Geometry in the tropical limit}, \href{http://arxiv.org/abs/1108.3111}{arXiv: 1108.3111} \item M. Einsiedler, [[M. Kapranov]], D. Lind, \emph{Non-archimedean amoebas and tropical varieties}, \href{http://arxiv.org/abs/math/0408311}{math.AG/0408311} \item [[Mikhail Kapranov]], \emph{Thermodynamics and the moment map}, \href{http://arxiv.org/abs/1108.3472}{arxiv/1108.3472} \item Walter Gubler, \emph{A guide to tropicalizations}, \href{http://arxiv.org/abs/1108.6126}{arxiv/1108.6126} \item E. Katz, \emph{A tropical toolkit}, \href{http://arxiv.org/abs/math/0610878}{math.AG/0610878} (Expo. Math. 27 (2009), No. 1, 1-36) \item Oleg Viro, \emph{Hyperfields for tropical geometry I. hyperfields and dequantization}, \href{http://arxiv.org/abs/1006.3034}{arxiv/1006.3034}; \emph{Tropical geometry and hyperfields}, talk at Mathematics - XXI century. PDMI 70th anniversary, \href{http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=1286}{video}; \emph{On basic concepts of tropical geometry}, Trudy Mat. Inst. Steklova \textbf{273} (2011), 271--303 \item Patrick Popescu-Pampu, Dmitry Stepanov, \emph{Local tropicalization}, \href{http://arxiv.org/abs/1204.6154}{arxiv/1204.6154} \item W. Gubler, \emph{Tropical varieties for non-Archimedean analytic spaces}, Invent. Math. \textbf{169} (2007), 321--376. \item David Speyer, [[Bernd Sturmfels]], \emph{Tropical mathematics}, \href{http://arxiv.org/abs/math/0408099}{math.CO/0408099}; \emph{The tropical Grassmannian}, Adv. Geom. 4 (2004) 389–411 \href{https://arxiv.org/abs/math/0304218}{math.AG/0304218} \href{http://emis.ams.org/journals/AG/4-3/4_389.pdf}{emis} \item Andreas Gathmann, \emph{Tropical algebraic geometry}, \href{http://arxiv.org/abs/math/0601322}{math.AG/0601322} \item [[Diane Maclagan]], \emph{Polyhedral structures on tropical varieties}, \href{http://arxiv.org/abs/1302.5372}{arXiv:1302.5372} \item Paul Johnson, \emph{Hurwitz numbers, ribbon graphs, and tropicalization}, \href{http://arxiv.org/abs/1303.1543}{arxiv/1303.1543} (pages 55-72 in CM580) \item Brugalle Erwan, Markwig Hannah, \emph{Deformation of tropical Hirzebruch surfaces and enumerative geometry}, \href{http://arxiv.org/abs/1303.1340}{arxiv/1303.1340} \item Qingchun Ren, Steven V Sam, Bernd Sturmfels, \emph{Tropicalization of classical moduli spaces}, \href{http://arxiv.org/abs/1303.1132}{arxiv/1303.1132} \item Martin Ulirsch, \emph{Functorial tropicalization of logarithmic schemes: The case of constant coefficients}, \href{http://arxiv.org/abs/1310.6269}{arxiv/1310.6269} \item Luis Felipe Tabera, \emph{On real tropical bases and real tropical discriminants}, \href{http://arxiv.org/abs/1311.2211}{arxiv/1311.2211} \item Simon Hampe, \emph{Tropical linear spaces and tropical convexity}, \href{http://arxiv.org/abs/1505.02045}{arxiv/1505.02045} \item Tyler Foster, \emph{Introduction to adic tropicalization}, \href{http://arxiv.org/abs/1506.00726}{arxiv/1506.00726} \item G. Mikhalkin, \emph{Quantum indices of real plane curves and refined enumerative geometry}, \href{http://arxiv.org/abs/1505.04338}{arxiv/1505.04338} \end{itemize} \begin{quote}% We associate a half-integer number, called the quantum index, to algebraic curves in the real plane satisfying to certain conditions. The area encompassed by the logarithmic image of such curves is equal to $\pi^2$ times the quantum index of the curve. We use the quantum index to refine real enumerative geometry in a way consistent with the Block-G"ottsche invariants from tropical enumerative geometry. \end{quote} \begin{itemize}% \item Diane Maclagan, Felipe Rinc\'o{}n, \emph{Tropical ideals}, \href{http://arxiv.org/abs/1609.03838}{arxiv/1609.03838} \item Kiumars Kaveh, Christopher Manon, \emph{Khovanskii bases, Newton-Okounkov polytopes and tropical geometry of projective varieties}, \href{https://arxiv.org/abs/1610.00298}{arxiv/1610.00298} \item [[Alain Connes]], [[Caterina Consani]], \emph{Geometry of the scaling site}, \href{https://arxiv.org/abs/1603.03191}{arxiv/1603.03191} \item Keyvan Yaghmayi, \emph{Geometry over the tropical dual numbers}, \href{https://arxiv.org/abs/1611.05508}{arxiv/1611.05508} \end{itemize} An alternative algebraic framework for tropical mathematics (not based on semirings), ``more compatible with valuation theory'' has been proposed in \begin{itemize}% \item Zur Izhakian, Manfred Knebusch, Louis Rowen, \emph{Algebraic structures of tropical mathematics}, \href{http://arxiv.org/abs/1305.3906}{arxiv/1305.3906} \end{itemize} Connections to diophantine integration (involving p-adic integration): \begin{itemize}% \item Eric Katz, Joseph Rabinoff, David Zureick-Brown, \emph{Diophantine and tropical geometry, and uniformity of rational points on curves}, \href{http://arxiv.org/abs/1606.09618}{arxiv/1606.09618} \end{itemize} \hypertarget{miscellaneous_mo_questions_discussions_etc}{}\subsubsection*{{Miscellaneous: MO questions, discussions, etc.}}\label{miscellaneous_mo_questions_discussions_etc} \begin{itemize}% \item MathOverflow : \href{http://mathoverflow.net/questions/72613/mikhalkins-tropical-schemes-versus-durovs-tropical-schemes}{Mikhalkin's tropical schemes versus Durov's tropical schemes}, \href{http://mathoverflow.net/questions/84629/learning-tropical-geometry}{learning-tropical-geometry} \item \href{http://en.wikipedia.org/wiki/Tropical_geometry}{wikipedia page} \item $n$Cafe: \href{http://golem.ph.utexas.edu/category/2013/01/tight_spans_isbell_completions.html}{Tight spans, Isbell completions and semi-tropical modules} \end{itemize} category: geometry \end{document}