\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{twisted bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Setup}{Setup}\dotfill \pageref*{Setup} \linebreak \noindent\hyperlink{the_abstract_definition}{The abstract definition}\dotfill \pageref*{the_abstract_definition} \linebreak \noindent\hyperlink{explicit_cocycles}{Explicit cocycles}\dotfill \pageref*{explicit_cocycles} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{twisted_ktheory}{Twisted K-theory}\dotfill \pageref*{twisted_ktheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{GeneralReferences}{General}\dotfill \pageref*{GeneralReferences} \linebreak \noindent\hyperlink{in_twisted_ktheory}{In twisted K-theory}\dotfill \pageref*{in_twisted_ktheory} \linebreak \noindent\hyperlink{ReferencesAsSectionsOf2Bundles}{As 2-sections of 2-bundles}\dotfill \pageref*{ReferencesAsSectionsOf2Bundles} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{twisted principal-bundle} is the object classified by a cocycle in [[twisted cohomology]] the way an ordinary [[principal bundle]] is the object classified by a cocycle in plain [[cohomology]] (generally in [[nonabelian cohomology]]). For $\hat G$ a [[group]], a $\hat G$-[[principal bundle]] is classified in degree 1 [[nonabelian cohomology]] with coefficients in the [[delooping|delooped]] [[groupoid]] $\mathbf{B} \hat G$. Given a realization of $\hat G$ as an abelian extension \begin{displaymath} A \to \hat G \to G \end{displaymath} of groups, i.e. given a [[fibration sequence]] \begin{displaymath} \mathbf{B}A \to \mathbf{B}\hat G \to \mathbf{B}G \end{displaymath} of [[groupoid]]s such that $\mathbf{B}A$ is once [[delooping|deloopable]] so that the [[fibration sequence]] continues to the right at least one step as \begin{displaymath} \mathbf{B}\hat G \to \mathbf{B}G \to \mathbf{B}^2 A \end{displaymath} the general mechanism of [[twisted cohomology]] induces a notion of \emph{twisted} $\hat G$-cohomology. The fibrations classified by this are the twisted $\hat G$-bundles. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We give a discussion of twisted bundles as a realization of [[twisted cohomology]] in any [[cohesive (∞,1)-topos]] $\mathbf{H}$ as described in the section . For the cases that $\mathbf{H} =$ [[ETop∞Grpd]] or $\mathbf{H} =$ [[Smooth∞Grpd]] this reproduces the traditional notion of [[topology|topological]] and [[smooth structure|smooth]] twisted bundles, respectively, whose twists are correspondingly topological or smooth [[bundle gerbe]]s/[[circle n-bundle]]s. \hypertarget{Setup}{}\subsubsection*{{Setup}}\label{Setup} Let $\mathbf{B}^{n-1}U(1) \in \mathbf{H}$ be the [[circle n-group]]. We shall concentrate here for definiteness on twists in $\mathbf{B}^2 U(1)$-[[cohomology]], since that reproduces the usual notions of twisted bundles found in the literature. But every other choice would work, too, and yield a corresponding notion of twisted bundles. Fix once and for all an [[∞-group]] $G \in \mathbf{H}$ and a [[cocycle]] \begin{displaymath} \mathbf{c} : \mathbf{B}G \to \mathbf{B}^2 U(1) \end{displaymath} representing a [[characteristic class]] \begin{displaymath} [\mathbf{c}] \in H_{Smooth}^2(\mathbf{B}G,U(1)) \end{displaymath} Notice that if $G$ is a [[compact space|compact]] [[Lie group]], as usual for the discussion of twisted bundles where $G = P U(n)$ is the [[projective unitary group]] in some dimension $n$, then by we have that \begin{displaymath} H_{Smooth}^2(\mathbf{B}G, U(1)) \simeq H^3(B G, \mathbb{Z}) \,, \end{displaymath} where on the right we have the ordinary [[integral cohomology]] of the [[classifying space]] $B G \in$ [[Top]] of $G$. \hypertarget{the_abstract_definition}{}\subsubsection*{{The abstract definition}}\label{the_abstract_definition} Let $G$ and $\mathbf{c}$ be as \hyperlink{Setup}{above}. \begin{defn} \label{TheGroupExtension}\hypertarget{TheGroupExtension}{} Write \begin{displaymath} \mathbf{B}\hat G \to \mathbf{B}G \stackrel{\mathbf{c}}{\to} \mathbf{B}^2 U(1) \end{displaymath} for the [[homotopy fiber]] of $\mathbf{c}$. \end{defn} This identifies $\hat G$ as the [[group extension]] of $G$ by the 2-[[cocycle]] $\mathbf{c}$. \begin{note} \label{TheGroupExtensionAsACircleBundle}\hypertarget{TheGroupExtensionAsACircleBundle}{} Equivalently this means that \begin{displaymath} \mathbf{B}U(1) \to \mathbf{B}\hat G \to \mathbf{B}G \end{displaymath} is the smooth [[circle n-bundle|circle 2-bundle]]/[[bundle gerbe]] classified by $\mathbf{c}$; and its [[loop space object]] \begin{displaymath} U(1) \to \hat G \to G \end{displaymath} the corresponding [[circle group]] [[principal bundle]] on $G$. \end{note} Let $X \in \mathbf{H}$ be any object. From \emph{[[twisted cohomology]]} we have the following notion. \begin{defn} \label{AbstractDefinition}\hypertarget{AbstractDefinition}{} The degree-1 \textbf{total twisted cohomology} $H_{tw}^1(X, \hat G)$ of $X$ with coefficients in $\hat G$, def. \ref{TheGroupExtension}, relative to the characteristic class $[\mathbf{c}]$ is the set \begin{displaymath} H^1_{tw}(X, \hat G) := \pi_0 \mathbf{H}_{tw}(X, \mathbf{G}\hat H) \end{displaymath} of connected components of the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{H}_{tw}(X, \mathbf{B}\hat G) &\stackrel{tw}{\to}& H_{Smooth}^2(X,U(1)) \\ \downarrow && \downarrow \\ \mathbf{H}(X, \mathbf{B}G) &\stackrel{\mathbf{c}_*}{\to}& \mathbf{H}(X, \mathbf{B}^2 U(1)) } \,, \end{displaymath} where the right verticsl morphism is any [[section]] of the truncation projection from cocycles to cohomology classes. Given a twisting class $[\alpha] \in H^2_{Smooth}(U(1))$ we say that \begin{displaymath} H_{[\alpha]}^1(X,\hat G) := H^1_{tw}(X, \hat G) \times_{[\alpha]} * \end{displaymath} is the $[\alpha]$-\textbf{twisted cohomology} of $X$ with coefficients in $\hat G$ relative to $\mathbf{c}$. \end{defn} \begin{note} \label{VanishingTwistGivesOrdinaryBundles}\hypertarget{VanishingTwistGivesOrdinaryBundles}{} For $[\alpha] = 0$ the trivial twist, $[\alpha]$-twisted cohomology coincides with ordinary cohomology: \begin{displaymath} H^1_{[\alpha] = 0}(X, \hat G) \simeq H^1_{Smooth}(X, \hat G) \,. \end{displaymath} \end{note} By the discussion at \emph{[[principal ∞-bundle]]} we may identify the elements of $H^1_{Smooth}(X, \hat G)$ with $\hat G$-[[principal ∞-bundle]]s $P \to X$. In particular if $\hat G$ is an ordinary [[Lie group]] and $X$ is an ordinary [[smooth manifold]], then these are ordinary $\hat G$-[[principal bundle]]s over $X$. This justifies equivalently calling the elements of $H^1_{tw}(X,\hat G)$ \textbf{twisted principal $\infty$-bundles}; and we shall write \begin{displaymath} \hat G TwBund(X) := H^1_{tw}(X, \hat G) \,, \end{displaymath} where throughout we leave the characteristic class $[\mathbf{c}]$ with respect to which the twisting is defined implcitly understood. \hypertarget{explicit_cocycles}{}\subsubsection*{{Explicit cocycles}}\label{explicit_cocycles} We unwind the abstract definition, def. \ref{AbstractDefinition}, to obtain the explicit definition of twisted bundles by [[Cech cohomology|Cech cocycles]] the way they appear in the traditional literature (see the \hyperlink{GeneralReferences}{General References} below). \begin{prop} \label{CechCocyclesForTwisted1Bundles}\hypertarget{CechCocyclesForTwisted1Bundles}{} Let $U(1) \to \hat G \to G$ be a [[group extension]] of [[topological group]]s. Let $X \in$ [[Mfd]] $\hookrightarrow$ [[ETop∞Grpd]] $=: \mathbf{H}$ be a [[paracompact topological space|paracompact]] [[topological manifold]] with [[good open cover]] $\{U_i \to X\}$. \begin{enumerate}% \item Relative to this every twisting cocycle $[\alpha] \in H^2_{ETop}(X, U(1))$ is a [[Cech cohomology]] representative given by a collection of functions \begin{displaymath} \{ \alpha_{i j k} : U_i \cap U_j \cap U_k \to U(1) \} \end{displaymath} satisfying on every quadruple intersection the equation \begin{displaymath} \alpha_{i j k} \alpha_{i k l} = \alpha_{j k l} \alpha_{i j l} \,. \end{displaymath} \item I terms of this cocycle data the twisted cohomology $H^1_{[\alpha]}(X, \hat G)$ is given by [[equivalence class]]es of [[cocycle]]s consisting of \begin{enumerate}% \item collections of functions \begin{displaymath} \{g_{i j} : U_i \cap U_j \to \hat G \} \end{displaymath} subject to the condition that on each triple overlap the equation \begin{displaymath} g_{i j} \dot g_{j k} = g_{i k} \cdot \alpha_{i j k} \end{displaymath} holds, where on the right we are injecting $\alpha_{i j k}$ via $U(1) \to \hat G$ into $\hat G$\newline and then form the product there; \item subject to the [[equivalence relation]] that identifies two such collections of cocycle data $\{g_{i j}\}$ and $\{g'_{i j}\}$ if there exists functions \begin{displaymath} \{h_i : U_i \to \hat G\} \end{displaymath} and \begin{displaymath} \{\beta_{i j} : U_i \cap U_j \to \hat U(1)\} \end{displaymath} such that \begin{displaymath} \beta_{i j} \beta_{j k} = \beta_{i k} \end{displaymath} and \begin{displaymath} g'_{i j} = h_i^{-1} \cdot g_{i j} \cdot h_j \cdot \beta_{i j} \,. \end{displaymath} \end{enumerate} \end{enumerate} \end{prop} \begin{proof} We pass to the standard [[presentable (∞,1)-category|presentation]] of [[ETop∞Grpd]] by the projective local [[model structure on simplicial presheaves]] over the [[site]] [[CartSp]]. We then compute the defining [[(∞,1)-pullback]] by a [[homotopy pullback]] there. Write $\mathbf{B}\hat G_{c}, \mathbf{B}^2 U(1)_c \in [CartSp^{op}, sSet]$ etc. for the standard models of the abstract objects of these names by simplicial presheaves. Write accordingly $\mathbf{B}(U(1) \to \hat G)_c$ for the delooping of the [[crossed module]] associated to the central extension $\hat G \to G$. In terms of this the [[characteristic class]] $\mathbf{c}$ is represented by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \mathbf{B}(U(1) \to \hat G)_c &\stackrel{\mathbf{c}}{\to}& \mathbf{B}(U(1) \to 1)_c = \mathbf{B}^2 U(1)_c \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}G_c } \,, \end{displaymath} where the top horizontal morphism is the evident projection onto the $U(1)$-labels. Moreover, the [[Cech nerve]] of the good open cover $\{U_i \to X\}$ forms a cofibrant [[resolution]] \begin{displaymath} \emptyset \hookrightarrow C(\{U_i\}) \stackrel{\simeq}{\to} X \end{displaymath} and so $\alpha$ is presented by an [[∞-anafunctor]] \begin{displaymath} \itexarray{ C(\{U_i\}) &\stackrel{\alpha}{\to}& \mathbf{B}^2 U(1)_c \\ \downarrow^{\mathrlap{\simeq}} \\ X } \,. \end{displaymath} Using that $[CartSp^{op}, sSet]_{proj}$ is a [[simplicial model category]] this means in conclusion that the [[homotopy pullback]] in question is given by the ordinary [[pullback]] of [[simplicial set]]s \begin{displaymath} \itexarray{ \mathbf{H}^1_{[\alpha]}(X,\hat G) &\to& * \\ \downarrow && \downarrow^{\mathrlap{\alpha}} \\ [CartSp^{op}, sSet](C(\{U_i\}), \mathbf{B}(U(1) \to \hat G)_c) &\stackrel{\mathbf{c}_*}{\to}& [CartSp^{op}, sSet](C(\{U_i\}), \mathbf{B}^2 U(1)_c) } \,. \end{displaymath} An object of the resulting simplicial set is then seen to be a simplicial map $g : C(\{U_i\}) \to \mathbf{B}(U(1) \to \hat G)_c$ that assigns \begin{displaymath} g \;\; : \;\; \itexarray{ && (x,j) \\ & \nearrow &\Downarrow& \searrow \\ (x,i) &&\to&& (x,k) } \;\;\;\; \mapsto \;\;\;\; \itexarray{ && \bullet \\ & {}^{\mathllap{g_{i j}(x)}}\nearrow &\Downarrow^{\alpha_{i j k}(x)}& \searrow^{\mathrlap{g_{j k}(x)}} \\ \bullet &&\underset{g_{i k}(x)}{\to}&& \bullet } \end{displaymath} such that projection out along $\mathbf{B}(U(1) \to \hat G)_c \to \mathbf{B}(U(1) \to 1)_c = \mathbf{B}^2 U(1)_c$ produces $\alpha$. Similarily for the morphisms. Writing out what these diagrams in $\mathbf{B}(U(1) \to \hat G)_c$ mean in equations, one finds the formulas claimed above. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} (\ldots{}) Consider the extension $U(1) \to U(n) \to P U(n)$ of the [[projective unitary group]] to the [[unitary group]] for all $n$. Then [[direct sum]] of matrices gives a sum operation \begin{displaymath} H^1_{[\alpha]}(X, P U(n_1)) \times H^1_{[\alpha]}(X, P U(n_2)) \to H^1_{[\alpha]}(X, P U(n_1 + n_2)) \end{displaymath} and a tensor product operation \begin{displaymath} H^1_{[\alpha_1]}(X, P U(n)) \times H^1_{[\alpha_2]}(X, P U(n)) \to H^1_{[\alpha_1]+ [\alpha_2]}(X, P U(n_1 \cdot n_2)) \end{displaymath} (\ldots{}) \hypertarget{twisted_ktheory}{}\subsubsection*{{Twisted K-theory}}\label{twisted_ktheory} [[equivalence class|Equivalence classes]] of twisted $U(n)$-bundles for fixed $\mathbf{B}U(1)$-twist $\alpha$ form a model for [[topological K-theory|topological]] $\alpha$-[[twisted K-theory]]. See there for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[twisted K-theory]] \item [[Chan-Paton bundle]] \item [[twisted spin structure]] \item [[twisted ∞-bundle]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{GeneralReferences}{}\subsubsection*{{General}}\label{GeneralReferences} The notion and term \emph{twisted bundle} (with finite rank) apparently first appears in \begin{itemize}% \item [[Marco Mackaay]], \emph{A note on the holonomy of connections in twisted bundles} (\href{http://arxiv.org/abs/math/0106019}{arXiv:math/0106019}) . \end{itemize} The equivalent notion of [[gerbe module]] apparently appears first in \begin{itemize}% \item [[Ernesto Lupercio]], [[Bernardo Uribe]], \emph{Gerbes over Orbifolds and Twisted K-theory} (\href{http://arxiv.org/abs/math/0105039}{arXiv:math/0105039}) , \end{itemize} there explicitly in terms of [[Cech cohomology|Cech cocycles]] relative to an [[open cover]]. The generalization to infinite rank and arbitrary covering morphisms was amplified in (\hyperlink{CBMMS}{CBMMS}) below. Discussion of a [[splitting principle]] for twisted vector bundles (phrased in terms of [[gerbe modules]]) is in \begin{itemize}% \item [[Atsushi Tomoda]], \emph{On the splitting principle of bundle gerbe modules}, Osaka J. Math. Volume 44, Number 1 (2007), 231-246. (\href{https://projecteuclid.org/euclid.ojm/1174324334}{Euclid}, talk slides \href{http://ton.prosou.nu/official/ryousi2005.pdf}{pdf}) \end{itemize} \hypertarget{in_twisted_ktheory}{}\subsubsection*{{In twisted K-theory}}\label{in_twisted_ktheory} Just as [[vector bundle]]s model cocycles in [[K-theory]], twisted vector bundles model cocycles in [[twisted K-theory]]. For twists $c$ that are torsion class (i.e. have finite order as group elements in the [[cohomology group]] $H(X,\mathbf{B}^2 A)$ ) this was realized in \begin{itemize}% \item [[Alan Carey]], [[Peter Bouwknegt]], [[Varghese Mathai]], [[Michael Murray]] and [[Danny Stevenson]], \emph{K-theory of bundle gerbes and twisted K-theory} , Commun Math Phys, 228 (2002) 17-49 (\href{http://arxiv.org/abs/hep-th/0106194}{arXiv}) \end{itemize} which also, apparently, is the source where gerbe modules as such were first introduced. The generalization of this construction to non-torsion twists requires using [[vectorial bundle]]s instead of plain [[vector bundle]]s. Full twisted K-theory in terms of twisted vectorial bundles was realized in \begin{itemize}% \item [[Kiyonori Gomi]], \emph{Twisted K-theory and finite-dimensional approximation} (\href{http://arxiv.org/abs/0803.2327}{arXiv}) \end{itemize} There the twisted cocycle equation discussed above appears on the bottom of page 7. Then there is \begin{itemize}% \item [[Max Karoubi]], \emph{Twisted bundles and twisted K-theory}, Clay Mathematics Proceedings, Volume 19 (2011) (\href{http://www.math.jussieu.fr/~karoubi/Publications/89.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Ulrich Pennig]], \emph{Twisted K-theory with coefficients in $C^\ast$-algebras}, (\href{http://arxiv.org/abs/1103.4096}{arXiv:1103.4096}) \end{itemize} \hypertarget{ReferencesAsSectionsOf2Bundles}{}\subsubsection*{{As 2-sections of 2-bundles}}\label{ReferencesAsSectionsOf2Bundles} The observation that twisted vector bundles may be understood as higher-order [[sections]] of [[2-vector bundle]]s associated with [[circle n-bundle with connection|circle 2-bundles]]/[[bundle gerbes]] appears in \begin{itemize}% \item [[Urs Schreiber]], \emph{Quantum 2-States: Sections of 2-vector bundles} Talk at \emph{Higher categories and their applications}, Fields institute (2007) ([[Schreiber2States.pdf:file]]). \end{itemize} A discussion of this with [[connection on a bundle|2-connections]] taken into account is in section 4.4.3 of \begin{itemize}% \item [[Urs Schreiber]], [[Konrad Waldorf]], \emph{Connections on non-abelian Gerbes and their Holonomy} (\href{http://arxiv.org/abs/0808.1923}{arXiv:0808.1923}) \end{itemize} A discussion in the context of [[principal infinity-bundles]] (as opposed to higher vector bundles), is in section ``2.3.5 Twisted cohomology and sections'' and then in section ``3.3.7.2 Twisted 1-bundles -- twisted K-theory'' \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]}. \end{itemize} The observation then re-appears independently in \begin{itemize}% \item [[Chris Rogers]], \emph{Higher geometric quantization}, talk at \emph{Higher Structures} in G\"o{}ttingen (2011) (\href{http://www.crcg.de/wiki/Higher_geometric_quantization}{pdf slides}) \end{itemize} [[!redirects twisted bundles]] [[!redirects twisted vector bundle]] [[!redirects twisted vector bundles]] [[!redirects twisted unitary bundle]] [[!redirects twisted unitary bundles]] \end{document}