\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{twisted differential c-structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $c$ any [[characteristic class]], its [[homotopy fibers]] on [[cocycle]] [[∞-groupoid]]s represent $c$-[[twisted cohomology]] (for instance [[twisted bundle]]s, [[twisted spin structures]], etc.). If $c$ is refined to a characteristic class $\mathbf{c}$ in [[Smooth∞Grpd]] there may exist further refinements $\hat {\mathbf{c}}$ to [[ordinary differential cohomology]]. The twisted cohomology of these \emph{differential characteristic classes} may be called \emph{twisted differential structures} . For instance \emph{[[differential string structure]]s} . See \hyperlink{Examples}{below} for more examples. These structures have a natural interpretation and play a natural roles as \emph{[[physical fields]]} (see there for a comprehensive discussion). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]], usually $\mathbf{H} =$ [[Smooth∞Grpd]] or [[SynthDiff∞Grpd]] or the like. Let $K, G$ be [[∞-group]] objects in $\mathbf{H}$ and let \begin{displaymath} \mathbf{c} : \mathbf{B}G \to \mathbf{B}K \end{displaymath} be a morphism of their [[delooping]] objects / [[moduli stacks]]. \begin{defn} \label{}\hypertarget{}{} For $X \in \mathbf{H}$ any object and $P \to X$ an $K$-[[principal ∞-bundle]] over $X$, the [[∞-groupoid]] \begin{displaymath} \mathbf{c}Struc_{[P]}(X) := \mathbf{H}(X, \mathbf{B}G) \times_{\mathbf{H}(X, \mathbf{B}K)} \{P\} \,, \end{displaymath} hence the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{c}Struc_{[P]}(X) &\to& * \\ \downarrow^{\mathrlap{P}} && \downarrow \\ \mathbf{H}(X, \mathbf{B}G) &\stackrel{\mathbf{H}(X, \mathbf{c})}{\to}& \mathbf{H}(X, \mathbf{B}K) } \end{displaymath} we may call equivalently \begin{itemize}% \item the $\infty$-groupoid of $K$-structures on $P$ (with respect to the given $\mathbf{c}$); \item the $\infty$-groupoid of $[P]$-twisted $\mathbf{c}$-structures. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} As discussed at \emph{[[twisted cohomology]]}, we may think of an object in $\mathbf{c}Struc_{[P]}(X)$ as a [[section]] (up to [[homotopy]]) $\sigma$ \begin{displaymath} \itexarray{ && \mathbf{B}G \\ & {}^{\sigma}\nearrow& \downarrow^{\mathbf{c}} \\ X &\stackrel{g}{\to}& \mathbf{B}K } \end{displaymath} where we think of $\mathbf{c}$ as being the \textbf{universal twisting $\infty$-bundle} and where $g : X \to \mathbf{B}K$ is a morphism presenting $P$. \end{remark} The following definition looks at a differential refinement of this situation. \begin{defn} \label{}\hypertarget{}{} For $\mathbf{c} : \mathbf{B}G \to \mathbf{B}^n U(1)$ a [[characteristic class|characteristic map]] in $\mathbf{H}$ and $\hat {\mathbf{c}} : \mathbf{B}G_{\mathrm{conn}} \to \mathbf{B}^n U(1)_{\mathrm{conn}}$ its differential refinement, sending [[connections on ∞-bundles]] to [[circle n-bundles with connection]] (see [[∞-Chern-Weil homomorphism]], we may think of this also as an [[extended Lagrangian]] for a [[higher gauge theory]]). We write $\hat {\mathbf{c}}\mathrm{Struc}_{\mathrm{tw}}(X)$ for the corresponding [[twisted cohomology]], \begin{displaymath} \itexarray{ \hat {\mathbf{c}}Struc_{tw}(X) &\stackrel{tw}{\to}& H^{n+1}_{diff}(X) \\ {}^{\mathllap{\chi}}\downarrow && \downarrow \\ \mathbf{H}(X, \mathbf{B}G_{conn}) & \stackrel{\hat \mathbf{c}}{\to} & \mathbf{H}(X, \mathbf{B}^n U(1)_{conn}) } \,. \end{displaymath} \end{defn} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} Twisted differential $\mathbf{c}$-structures appear in various guises in the [[background gauge field]]s of [[string theory]] application. \begin{itemize}% \item [[reduction of structure groups]] \begin{itemize}% \item [[orthogonal structure]] / [[Riemannian metric]]; see the discussion at \emph{[[vielbein]]} . \item [[generalized complex geometry]] \item [[exceptional generalized geometry]] \end{itemize} \item [[lift of structure groups]] \item Higher differential spin structures \begin{itemize}% \item [[twisted spin structure]], [[differential spin structure]] \item [[twisted spin{\tt \symbol{94}}c-structure]] \item [[twisted differential string structure]] \item [[supergravity C-field]] \item [[twisted differential fivebrane structure]] \item [[twisted Wu structure]] \end{itemize} \item [[p1-structure]] [[2-framing]] \item [[w4-structure]] [[w4-orientation of EO(2)-theory]] \item [[differential T-duality]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reduction and lift of structure groups]] \item [[field (physics)]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion was introduced in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Twisted Differential String and Fivebrane Structures]]} \end{itemize} and expanded on in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]} \end{itemize} An exposition is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:A higher stacky perspective on Chern-Simons theory]]} \end{itemize} Lecture notes include \begin{itemize}% \item [[Urs Schreiber]], \emph{[[twisted smooth cohomology in string theory]]}, Lectures at the ESI-institute (June 2012) \end{itemize} A general account is in section 5.2 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} In \begin{itemize}% \item [[Daniel Freed]], [[Constantin Teleman]], \emph{Relative quantum field theory} (\href{http://arxiv.org/abs/1212.1692}{arXiv:1212.1692}) \end{itemize} it is proposed to call such twisted structures ``relative fields''. [[!redirects c-structure]] [[!redirects twisted differential c-structure]] [[!redirects twisted differential c-structures]] [[!redirects tiwsted differential c-structure]] [[!redirects twisted differential structure]] [[!redirects twisted differential structures]] \end{document}