\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{twisted spin^c structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{topological}{Topological}\dotfill \pageref*{topological} \linebreak \noindent\hyperlink{smooth}{Smooth}\dotfill \pageref*{smooth} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{anomaly_cancellation_in_physics}{Anomaly cancellation in physics}\dotfill \pageref*{anomaly_cancellation_in_physics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesAnomalyCancellation}{In physics}\dotfill \pageref*{ReferencesAnomalyCancellation} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{topological}{}\subsubsection*{{Topological}}\label{topological} For $n \in \mathbb{N}$ the [[Lie group]] $Spin^c(n)$ is a [[central extension]] \begin{displaymath} U(1) \to Spin^c(n) \to SO(n) \end{displaymath} of the [[special orthogonal group]] by the [[circle group]]. This comes with a long [[fiber sequence]] \begin{displaymath} \cdots \to B U(1) \to B Spin^c(n) \to B SO(n) \stackrel{W_3}{\to} B^2 U(1) \,, \end{displaymath} where $W_3$ is the \emph{third integral [[Stiefel-Whitney class]]} . By the definition at [[twisted cohomology]], for a given class $[c] \in H^3(X, \mathbb{Z})$, a \textbf{$c$-twisted $spin^c$-structure} is a choice of [[homotopy]] \begin{displaymath} \eta : c \stackrel{\simeq}{\to} W_3(T X) \,. \end{displaymath} The [[space]]/[[∞-groupoid]] of all twisted $Spin^c$-structures on $X$ is the [[homotopy fiber]] $W_3 Struc_{tw}(T X)$ in the [[pasting diagram]] of [[homotopy pullback]]s \begin{displaymath} \itexarray{ W_3 Struc_{tw}(T X) &\to& W_3 Struc_{tw}(X) &\stackrel{tw}{\to}& H^3(X, \mathbb{Z}) \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{T X}{\to}& Top(X, B SO(n)) &\stackrel{W_3}{\to}& Top(X, B^2 U(1)) } \,, \end{displaymath} where the right vertical morphism is the canonical [[effective epimorphism]] that picks one point in each connected component. \hypertarget{smooth}{}\subsubsection*{{Smooth}}\label{smooth} Since $U(1) \to Spin^c \to SO$ is a sequence of [[Lie group]]s, the above may be lifted from the [[(∞,1)-topos]] [[Top]] $\simeq$ [[∞Grpd]] to [[Smooth∞Grpd]]. More precisely, by the discussion at [[Lie group cohomology]] (and [[smooth ∞-groupoid -- structures]]) the characteristic map $W_3 : B SO \to B^2 U(1)$ in $\infty Grpd$ has, up to equivalence, a unique lift \begin{displaymath} \mathbf{W}_3 : \mathbf{B} SO \to \mathbf{B}^2 U(1) \end{displaymath} to [[Smooth∞Grpd]], where on the right we have the [[delooping]] of the smooth [[circle n-group|circle 2-group]]. By the general definition at \emph{[[twisted differential c-structure]]} , the [[2-groupoid]] of \emph{smooth twisted $spin^c$-structures} $\mathbf{W}_3 Struc_{tw}(X)$ is the joint [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ \mathbf{W}_3 Struc_{tw}(T X) &\to& \mathbf{W}_3 Struc_{tw}(X) &\stackrel{tw}{\to}& H_{smooth}^2(X, U(1)) \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{T X}{\to}& Smooth \infty Grpd(X, \mathbf{B} SO(n)) &\stackrel{\mathbf{W}_3}{\to}& Smooth \infty Grpd(X, \mathbf{B}^2 U(1) } \,. \end{displaymath} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{anomaly_cancellation_in_physics}{}\subsubsection*{{Anomaly cancellation in physics}}\label{anomaly_cancellation_in_physics} The existence of an ordinary [[spin structure]] on a space $X$ is, as discussed there, the condition for $X$ to serve as the [[target space]] for the [[spinning particle]] [[sigma-model]], in that the existence of this structure is precisely the condition that the corresponding fermionic [[quantum anomaly]] on the [[worldline]] vanishes. Twisted $spin^c$-structures appear similarly as the conditions for the analogous quantum anomaly cancellation, but now of the open [[type II superstring]] ending on a [[D-brane]]. This is also called the \textbf{[[Freed-Witten anomaly cancellation]]}. More precisely, in these applications the class of $W_3(TX) - H$ need not vanish, it only needs to be $n$-[[torsion]] if there is moreover a [[twisted bundle]] of rank $n$ on the $D$-brane. See the \href{ReferencesAnomalyCancellation}{references below} for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[twisted differential c-structure|(twisted differential) c-structures]] \begin{itemize}% \item [[orientation]] \item [[spin structure]], [[twisted spin structure]] [[spin{\tt \symbol{94}}c structure]], \textbf{twisted $spin^c$ structure} \item [[string structure]], [[differential string structure]] \item [[fivebrane structure]], [[differential fivebrane structure]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The notion of twisted $Spin^c$-structures as such were apparently first discussed in section 5 of \begin{itemize}% \item [[Christopher Douglas]], \emph{On the Twisted K-Homology of Simple Lie Groups} Topology, Volume 45, Issue 6, November 2006, Pages 955-988 (\href{http://arxiv.org/abs/math/0402082}{arXiv:0402082}) \end{itemize} More discussion appears in section 3 of \begin{itemize}% \item [[Bai-Ling Wang]], \emph{Geometric cycles, index theory and twisted K-homology} J. Noncommut. Geom. 2 (2008), no. 4, 497--552 (\href{http://arxiv.org/abs/0710.1625}{arXiv:0710.1625}) \end{itemize} The refinement to smooth twisted structures is discussed in section 4.1 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} \hypertarget{ReferencesAnomalyCancellation}{}\subsubsection*{{In physics}}\label{ReferencesAnomalyCancellation} The need for twisted $Spin^c$-structures as [[Freed-Witten anomaly cancellation]] condition on the [[worldvolume]] of [[D-branes]] in [[string theory]] was first discussed in \begin{itemize}% \item [[Daniel Freed]], [[Edward Witten]], \emph{Anomalies in String Theory with D-Branes} (\href{http://arxiv.org/abs/hep-th/9907189}{arXiv:hep-th/9907189}) \end{itemize} More details are in \begin{itemize}% \item [[Anton Kapustin]], \emph{D-branes in a topologically nontrivial B-field} , Adv. Theor. Math. Phys. 4, no. 1, pp. 127--154 (2000), (\href{http://arxiv.org/abs/hep-th/9909089}{arXiv:hep-th/9909089}) \end{itemize} A clean formulation and review is provided in \begin{itemize}% \item Loriano Bonora, Fabio Ferrari Ruffino, Raffaele Savelli, \emph{Classifying A-field and B-field configurations in the presence of D-branes} (\href{http://arxiv.org/abs/0810.4291}{arXiv:0810.4291}) \item Fabio Ferrari Ruffino, \emph{Classifying A-field and B-field configurations in the presence of D-branes - Part II: Stacks of D-branes} (\href{http://arxiv.org/abs/1104.2798}{arXiv:1104.2798}) \item Fabio Ferrari Ruffino, \emph{Topics on topology and superstring theory} (\href{http://arxiv.org/abs/0910.4524}{arXiv:0910.4524}) \end{itemize} and \begin{itemize}% \item Kim Laine, \emph{Geometric and topological aspects of Type IIB D-branes} (\href{http://arxiv.org/abs/0912.0460}{arXiv:0912.0460}) \end{itemize} In (\hyperlink{Laine}{Laine}) the discussion of FW-anomaly cancellation with finite-rank gauge bundles is towards the very end, culminating in equation (3.41). [[!redirects twisted spin{\tt \symbol{94}}c structures]] [[!redirects twisted spin{\tt \symbol{94}}c-structure]] [[!redirects twisted spin{\tt \symbol{94}}c-structures]] \end{document}