\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{twisting cochain} \hypertarget{twisting_cochains}{}\section*{{Twisting cochains}}\label{twisting_cochains} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relation_to_the_adjunction_barcobar}{Relation to the adjunction bar-cobar}\dotfill \pageref*{relation_to_the_adjunction_barcobar} \linebreak \noindent\hyperlink{some_usages_of_twisting_cochains}{Some usages of twisting cochains}\dotfill \pageref*{some_usages_of_twisting_cochains} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $(C,d_C)$ be a dg-[[coalgebra]] with comultiplication $\Delta$ and $(A,d_A)$ a [[dg-algebra]] with multiplication $\mu$. A \textbf{twisting cochain} is a morphism $\tau:C\to A[1]$ such that the following [[Maurer-Cartan equation]] holds: \begin{displaymath} d_A\circ\tau+\tau\circ d_C+\mu\circ(\tau\otimes\tau)\circ\Delta = 0. \end{displaymath} Notice that the last, perturbation term describes the square $\tau\star\tau$ in the [[convolution]] algebra of homogeneous maps in $\mathrm{Hom}(C,A)$. \hypertarget{relation_to_the_adjunction_barcobar}{}\subsection*{{Relation to the adjunction bar-cobar}}\label{relation_to_the_adjunction_barcobar} Let $\mathrm{Cogc}$ be the category of cocomplete dg-co(al)gebras and $\mathrm{Alg}$ the category of dg-algebras. There is a [[bar and cobar construction|bar-construction]] functor $B :\mathrm{Alg}\to\mathrm{Cogc}$ which is a [[adjoint functor|right adjoint]] to the [[bar and cobar construction|cobar-construction]] functor $\Omega:\mathrm{Cogc}\to\mathrm{Alg}$. Starting from a map $f\in\mathrm{Cogc}(C,B A)$, one constructs a twisting cochain $\tau_f$ by postcomposing $f: C\to B A$ by the natural projection $B A\to A[1]$; the [[Maurer-Cartan equation]] for $\tau_f$ translates to saying that $f$ is a chain map, $d_{B A}\circ f = f\circ d_C$. One then replaces $\tau_f$ by the composition of the evident canonical map $\tau_0:\Omega C\to C[-1]$ (called the \emph{canonical twisting cochain}) and $\tau_f[-1]:C[-1]\to A$ to obtain a morphism $f':\Omega C\to A$. The Maurer--Cartan equation for $\tau$ is equivalent also to saying that $f'$ is a chain map, i.e. $d_A\circ f'=f'\circ d_{\Omega C}$. \hypertarget{some_usages_of_twisting_cochains}{}\subsection*{{Some usages of twisting cochains}}\label{some_usages_of_twisting_cochains} A twisting cochain is a datum used to define the [[twisted tensor product]] $L\otimes_\tau M$ for any right $C$-co[[module]] $L$ and any left $A$-module $M$, as well as the [[twisted module of homomorphisms]] $\mathrm{Hom}_\tau(N,P)$ where $N$ is a left $C$-dg-comodule and $P$ a left $A$-dg-module. B. Keller and his student Kenji Lef\`e{}vre-Hasegawa have shown that [[Koszul duality]] is closely related to twisting cochains. Given a twisting cochain $\tau$, one always has a pair of [[adjoint functor]]s $\otimes_\tau A$ and $\otimes_\tau C$ between the [[derived category]] of modules over $A$ and the coderived category of comodules over $C$ (where $C$ is in $\mathrm{Cogc}$ and the coderived category is just the localization of the category of complexes of comodules at the class of [[weak equivalence]]s, which are by definition those morphisms which became [[quasi-isomorphism]]s after applying $\otimes_{\tau_0}\Omega C$ where $\tau_0:\Omega C\to C[-1]$ is the canonical twisting cochain). This pair of adjoint functors is an [[adjoint equivalence]] iff the composition $\Omega C\to C[-1]$ by $\tau[-1]:C[-1]\to A$ (compare reasoning above) is a quasi-isomorphism. This can also be expressed by saying that the canonical map \begin{displaymath} A\otimes_\tau C\otimes_\tau A\to A \end{displaymath} is a quasiisomorphism. In that case, Keller calls the triple $(C,A,\tau)$ the \emph{Koszul--Moore triple}. Lefevre-Hasegawa's thesis () asserts that in that case $A$ determines $C$ up to a weak equivalence (defined above) and $C$ determines $A$ up to a quasi-isomorphism. Moreover, \begin{displaymath} H_* C = \mathrm{Tor}^A_*(k,k)\quad \text{and}\quad H^* A = \mathrm{Ext}_C(k,k) \end{displaymath} where $k$ is the [[ground field]]. Notice that such a formulation of Koszul duality using coalgebras and coderived categories avoids various finiteness conditions present when Koszul duality is phrased as relating algebras to algebras. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} Moore was one of the people who studied the subject of `differential coalgebra', including twisting cochains, in the 1960s and 1970s and gave a survey of the area during his ICM address. There are variants of the notion of twisting cochain in a variety of other contexts. A [[twisting function]] is an analogue of a twisting cochain in the context of [[simplicial set]]s. Apart from original usage for the algebraic models for fibrations, twisting cochains and variants are used in [[homological perturbation theory]] (sometimes abbreviated HPT), rational homotopy theory, deformation theory, study of $A_\infty$-categories, Grothendieck duality on complex manifolds (Toledo-Tong) and so on. An old query archived \href{http://www.math.ntnu.no/~stacey/Mathforge/nForum/comments.php?DiscussionID=3399&Focus=27888#Comment_27888}{here}. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Edgar H. Brown Jr. Twisted tensor products. I. Ann. of Math. (2) 69 (1959) 223--246. \item Kenji Lef\`e{}vre-Hasegawa, Sur les A-infini cat\'e{}gories, (\href{http://people.math.jussieu.fr/~keller/lefevre/TheseFinale/tel-00007761.pdf}{pdf}) \item V. A. Smirnov, Simplicial and operad methods in algebraic topology, Transl. Math. Monogr. 198, AMS 2001 (transl. by G. L. Rybnikov) \item D. Barnes and L. A. Lambe, A Fixed Point Approach to Homological Perturbation Theory, with Don Barnes, Proc. AMS, 112 (1991), 881--892. \item K. Hess, The cobar construction: a modern perspective (\href{http://sma.epfl.ch/~hessbell/Minicourse_Louvain_Notes.pdf}{pdf}) (lecture notes from a minicourse at Louvain) \item Alexander I. Efimov, Valery A. Lunts, Dmitri O. Orlov, Deformation theory of objects in homotopy and derived categories, \href{http://arxiv.org/abs/math/0702838}{part 1}, \href{http://arxiv.org/abs/math/0702839}{part 2}, \href{http://arxiv.org/abs/math/0702840}{part 3}) \item N. R. O'Brian, Geometry of twisting cochains. Compositio Math. 63 (1987), no. 1, 41--62. \item D. Toledo, Yue Lin L. Tong, \emph{Duality and intersection theory in complex manifolds. I.} Math. Ann. \textbf{237} (1978), no. 1, 41--77; II. The holomorphic Lefschetz formula. Ann. of Math. (2) \textbf{108} (1978), no. 3, 519--538. \item [[Henri Gillet]], The $K$-theory of twisted complexes, in ``Applications of algebraic $K$-theory to algebraic geometry and number theory'', Part I, II (Boulder, Colo., 1983), 159--191, Contemp. Math., 55, AMS 1986. \item Richard M. Hain, \emph{Twisted cochains and duality between minimal algebras and minimal Lie algebras}, Trans. AMS \textbf{277}, 1 (1983) 397--411. \end{itemize} [[!redirects twisting cochain]] [[!redirects twisting cochains]] \end{document}