\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{two-level type theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{deduction_and_induction}{}\paragraph*{{Deduction and Induction}}\label{deduction_and_induction} [[!include deduction and induction - contents]] \hypertarget{constructivism_realizability_computability}{}\paragraph*{{Constructivism, Realizability, Computability}}\label{constructivism_realizability_computability} [[!include constructivism - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{type_theories}{Type theories}\dotfill \pageref*{type_theories} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{semisimplicial_types}{Semisimplicial types}\dotfill \pageref*{semisimplicial_types} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{natural_numbers}{Natural numbers}\dotfill \pageref*{natural_numbers} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Two-level type theory} (2LTT) refers to versions of [[Martin-Lof type theory]] that combine two type theories: one level as a [[homotopy type theory]], which may include [[univalence axiom|univalent]] universes and [[higher inductive types]], and the second level as a traditional form of type theory validating [[uniqueness of identity proofs]]. The second layer may be understood as the internalised meta-theory of the first. The rules are much inspired by the homotopical semantics in [[fibration categories]] and [[model categories]], according to which the types of the homotopy layer are sometimes called \textbf{[[fibrant object|fibrant]] types} and the others \textbf{non-fibrant types}. An alternative terminology is simply \textbf{types} (since these are the objects of real interest) and \textbf{pretypes} (an auxiliary structure used to study the types). In other words, where default [[homotopy type theory]] has [[categorical semantics]] (see at \emph{[[relation between category theory and type theory]]}) in suitable [[type-theoretic model categories]] but in such a way that only the [[(infinity,1)-category]] [[presentable (infinity,1)-category|presented]] by that really matters, in two-level type theory one adds explicit control over the presenting model category (or other kind of [[fibration category]]), thus apparently breaking the $(\infty,1)$-categorical ``[[principle of equivalence]]'' but providing more tools for handling the presentation. It is an open question to what extent the principle of equivalence is actually broken, i.e. whether results proven in two-level type theory can be transferred to any model categorical presentation. \hypertarget{type_theories}{}\subsection*{{Type theories}}\label{type_theories} \begin{itemize}% \item The first proposal for two-level type theory was [[Vladimir Voevodsky]]`s [[Homotopy Type System]]. This system had a reflection rule collapsing the non-fibrant ``exact equality'' to [[judgmental equality]], making some things easier but making type-checking undecidable. \item More recently the proposals of \hyperlink{ACK17}{ACK} simply assumes [[uniqueness of identity proofs]] for the exact equality; this seems to suffice for most if not all purposes. \item [[computational type theory|Computational]] [[cubical type theory]] can also include a non-fibrant layer: its syntax is interpreted as cubical sets, where ``fibrancy'' is a \emph{defined} condition on pretypes (existence of Kan operations). \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{semisimplicial_types}{}\subsubsection*{{Semisimplicial types}}\label{semisimplicial_types} Two-level type theories (including HTS and ACK) were motivated to a large extent by the technical difficulties encountered in formalizing [[semisimplicial types]] in default [[homotopy type theory]] (HoTT). This problem comes precisely from the fact that HoTT is really the [[internal language]] of some [[(infinity,1)-topos]] and hence defining [[simplicial objects]] or similar here means to speak of [[simplicial objects in an (infinity,1)-category]], which means that the [[simplicial identities]] hold only up to [[coherence|coherent]] higher [[homotopy]]. The problem of syntactically encoding the infinite amount of this [[coherence]] data remains unsolved to date. For [[semisimplicial types]] the difficulties greatly reduce (since the evident iterated [[dependent type]]-definition of a semisimplicial type is automatically interpreted by a [[Reedy model structure|Reedy]]-[[fibrant object]] in the given [[type-theoretic model category]], which takes care of all the homotopy coherence by the power of [[model category]] theory, see at \emph{[[internal (infinity,1)-category]]} for more on this) but technical problems remain even in formulating the plain 1-categorical [[simplicial identities]] to all degrees. The ``exact equality'' of two-level type theories solves this problem because such equalities can be defined by induction. \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} \hypertarget{natural_numbers}{}\subsubsection*{{Natural numbers}}\label{natural_numbers} One important choice to be made in writing down a two-level type theory is whether there is one natural numbers type or two. There must certainly be a fibrant natural numbers type; the question is whether the elimination rule for this ``fibrant nat'' allows elimination also into non-fibrant types. If it does not, then there should also be a ``non-fibrant nat'' which is not fibrant, but whose elimination principle can eliminate into other non-fibrant types. Semantically, this distinction corresponds to whether the natural numbers object of the model category presentation is already fibrant, or whether it needs to be fibrantly replaced to represent a (fibrant) type. In some models, such as [[simplicial sets]], it is already fibrant; but in others, such as [[local model structure on simplicial presheaves]], it is not. It is an open question whether any [[(infinity,1)-topos]] can be presented by a model category in which the natural numbers object is fibrant, and thus serve as semantics for a two-level type theory with only one natural numbers type. Since the definition of semisimplicial types requires an inductive definition of a (non-fibrant) exact equality, if there are two nats then it must use the non-fibrant one. This means that, without additional rules, a two-level type theory with two nats cannot define a \emph{fibrant} type of \emph{untruncated} semisimplicial types: for each non-fibrant $n$ it can define a fibrant type of $n$-truncated semisimplicial types, but the limit of these types over the \emph{non-fibrant} nat is no longer fibrant. Assuming only one nat is sufficient to solve this problem, but as mentioned above this may exclude desirable models. Another weaker axiom, which \emph{is} satisfied in all sufficiently nice model categories, is that fibrant types are closed under limits of towers of fibrations indexed by the non-fibrant nat. (In two-level type theory terminology, this is a strengthening of the assumption that the non-fibrant nat is ``cofibrant''.) \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[homotopytypetheory:HomePage|Homotopy Type Theory Wiki]], \emph{[[homotopytypetheory:Homotopy Type System]]} \item Thorsten Altenkirch, Paolo Capriotti, Nicolai Kraus, \emph{Extending Homotopy Type Theory with Strict Equality}, (\href{https://arxiv.org/abs/1604.03799}{arXiv:1604.03799}) \item Danil Annenkov, Paolo Capriotti, Nicolai Kraus, \emph{Two-Level Type Theory and Applications}, (\href{https://arxiv.org/abs/1705.03307}{arXiv:1705.03307}) \end{itemize} [[!redirects 2-level type theory]] [[!redirects 2-level type theories]] [[!redirects 2LTT]] [[!redirects HTS]] [[!redirects Homotopy Type System]] [[!redirects fibrant type]] [[!redirects fibrant types]] [[!redirects non-fibrant type]] [[!redirects non-fibrant types]] \end{document}