\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{two-out-of-six property} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{relation_to_other_concepts}{Relation to other concepts}\dotfill \pageref*{relation_to_other_concepts} \linebreak \noindent\hyperlink{2outof3}{2-out-of-3}\dotfill \pageref*{2outof3} \linebreak \noindent\hyperlink{identities_and_isomorphisms}{Identities and isomorphisms}\dotfill \pageref*{identities_and_isomorphisms} \linebreak \noindent\hyperlink{closure_under_retracts}{Closure under retracts}\dotfill \pageref*{closure_under_retracts} \linebreak \noindent\hyperlink{saturation}{Saturation}\dotfill \pageref*{saturation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In a [[category]] $C$, a [[class]] $W\subseteq Mor(C)$ of [[morphisms]] is said to satisfy \textbf{2-out-of-6} if for any sequence of three composable morphisms \begin{displaymath} X\xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} K \end{displaymath} if $w v$ and $v u$ are in $W$, then so are $u$, $v$, $w$, and $w v u$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The class of [[isomorphisms]] in any category satisfies 2-out-of-6. This case is the archetype of most of the cases in which the property is invoked: 2-out-of-6 is characteristic of morphisms that have a notion of [[inverse]]. \item A category equipped with a class of ``[[category with weak equivalences|weak equivalences]]'' containing the [[identity morphisms]] and satisfying 2-out-of-6 is called a [[homotopical category]]. In particular, this includes any [[model category]]. \end{itemize} \hypertarget{relation_to_other_concepts}{}\subsection*{{Relation to other concepts}}\label{relation_to_other_concepts} \hypertarget{2outof3}{}\subsubsection*{{2-out-of-3}}\label{2outof3} The 2-out-of-6 property implies the [[two-out-of-three]] property. For on the one hand, if $f$ and $g$ are in $W$, then applying 2-out-of-6 to $\xrightarrow{f} \xrightarrow{1} \xrightarrow{g}$, we find that $g f\in W$. On the other hand, if $f$ and $g f$ are in $W$, then applying 2-out-of-6 to $\xrightarrow{1} \xrightarrow{f} \xrightarrow{g}$, we find that $g\in W$, and similarly if $g$ and $g f$ are in $W$. \hypertarget{identities_and_isomorphisms}{}\subsubsection*{{Identities and isomorphisms}}\label{identities_and_isomorphisms} If $W$ satisfies 2-out-of-6 and contains the identities (i.e. $C$ is a homotopical category), then $W$ contains all isomorphisms. For if $f$ has inverse $g$, then applying 2-out-of-6 to $\xrightarrow{g} \xrightarrow{f} \xrightarrow{g}$ we find that $g$ and $f$ are in $W$. \hypertarget{closure_under_retracts}{}\subsubsection*{{Closure under retracts}}\label{closure_under_retracts} The 2-out-of-6 property is closely related to the property that $W$ is closed under [[retracts]], as a [[subcategory]] of the [[arrow category]]. For instance, we have the following theorem due to \hyperlink{BlumbergMandell}{Blumberg-Mandell} (stated there in the context of [[Waldhausen categories]]): \begin{theorem} \label{CofibRetracts}\hypertarget{CofibRetracts}{} Suppose a [[category with weak equivalences]] $\mathcal{C}$ has an additional class of maps called [[cofibrations]] which satisfy the following properties: \begin{itemize}% \item All [[pushouts]] of cofibrations exist. \item The pushout of a cofibration that is also a weak equivalence is again a cofibration and a weak equivalence. \item Every weak equivalence factors as a weak equivalence that is a cofibration followed by a weak equivalence that is a [[retraction]]. \end{itemize} Then if the weak equivalences in $\mathcal{C}$ are closed under retracts, they also satisfy 2-out-of-6. \end{theorem} \begin{proof} Suppose the first three assumptions on the cofibrations, and let \begin{displaymath} A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} D \end{displaymath} be a sequence of composable maps, with $w v$ and $v u$ weak equivalences. Factor $v u\colon A\to C$ as $A \xrightarrow{i} C' \xrightarrow{p} C$ where $i$ is a cofibration weak equivalence and $p$ is a weak equivalence with a [[section]]] $s\colon C\to C'$. Let $B'$ be the pushout \begin{displaymath} \itexarray{ A & \overset{i}{\to} & C'\\ ^u\downarrow && \downarrow^h\\ B& \underset{k}{\to} & B'} \end{displaymath} Since $p i = v u$, we have a unique map $g\colon B' \to C$ such that $g h = p$ and $g k = v$. Define $f = h s$; then $g f = g h s = p s = 1_C$. Since $i$ is a cofibration weak equivalence, so is $k$. And since $w g k = w v\colon B\to D$ is a weak equivalence, by two-out-of-three, $w g\colon B' \to D$ is also a weak equivalence. But now we have a commutative diagram \begin{displaymath} \itexarray{C & \overset{f}{\to} & B' & \xrightarrow{g} & C \\ ^w\downarrow && \downarrow^{w g} && \downarrow^w\\ D& \underset{=}{\to} & D & \underset{=}{\to} & D} \end{displaymath} exhibiting $w$ as a retract of $w g$ in the arrow category. Thus, by assumption $w$ is a weak equivalence. By successive applications of two-out-of-three, so are $v$, $u$, and $w v u$. \end{proof} Of course, there is a dual theorem for fibrations. Note that the fibrations in a [[category of fibrant objects]] satisfy (the duals of) all the above conditions. They are not implied by the axioms for the cofibrations in a [[Waldhausen category]] (the factorization axiom is what is missing), but many Waldhausen categories do satisfy them. \hypertarget{saturation}{}\subsubsection*{{Saturation}}\label{saturation} The 2-out-of-6 property is also closely related to the property that $W$ is \emph{saturated}, in the sense that any morphism which becomes an isomorphism in the [[localization]] $C[W^{-1}]$ is already a weak equivalence. (This is unrelated to the notion of [[saturated class of maps]] used in the theory of [[weak factorization systems]].) Clearly saturation implies 2-out-of-6, but we also have the following two converses. \begin{theorem} \label{FracSat}\hypertarget{FracSat}{} Suppose $W$ admits a [[calculus of fractions]]. Then $W$ satisfies two-out-of-six if and only if it is saturated. \end{theorem} \begin{proof} This is from 7.1.20 of \emph{[[Categories and Sheaves]]}. Suppose $f\colon X\to Y$ becomes an isomorphism in $\mathcal{C}[W^{-1}]$, and represent its inverse by $Y \xrightarrow{g} X' \overset{s}{\leftarrow} X$ with $s\in W$. Then since $g f$ and $s$ represent the same morphism in $\mathcal{C}[W^{-1}]$, there is a morphism $t\colon X'\to X''$ in $W$ such that $t g f = t s$. Since $t s\in W$, it follows by 2-out-of-3 that $g f\in W$. Now applying this same argument to $g$, we obtain an $h$ such that $h g \in W$. But then by 2-out-of-6, we have $f\in W$ as desired. \end{proof} \begin{theorem} \label{CofSat}\hypertarget{CofSat}{} Suppose $C$ has a class of ``cofibrations'' satisfying the properties in Theorem \ref{CofibRetracts}, and moreover the pushout of any weak equivalence along a cofibration is a weak equivalence. Then $W$ satisfies two-out-of-six if and only if it is saturated (and hence, if and only if it is closed under retracts). \end{theorem} \begin{proof} See \hyperlink{BlumbergMandell}{Blumberg-Mandell} for details; an outline follows. We first observe that $W$ admits a [[homotopy calculus of left fractions]], and in particular that every morphism in $\mathcal{C}[W^{-1}]$ can be represented by a zigzag $A \to C \overset{\sim}{\leftarrow} B$ in which $B\xrightarrow{\sim} C$ is a cofibration and a weak equivalence. See \hyperlink{BlumbergMandell}{Blumberg-Mandell}, section 5 for a detailed proof. The idea is that given any zigzag $A \overset{\sim}{\leftarrow} D \to B$, we factor $D\to A$ as a cofibration weak equivalence followed by a retraction weak equivalence, then push out the cofibration along $D\to B$ and use the section to obtain a map from $A$ into the pushout. Now suppose $a\colon A\to B$ becomes an isomorphism in $C[W^{-1}]$, and represent its inverse by $B \xrightarrow{b} C \overset{c}{\leftarrow} A$ with $c$ a cofibration weak equivalence. Since the composite $A \xrightarrow{b a} C \overset{c}{\leftarrow} A$ represents $1_A$, we have $b a \in W$. Consider the following diagram where the squares are pushouts: \begin{displaymath} \itexarray{ && A & \overset{a}{\to} & B & \xrightarrow{b} & C \\ && ^c\downarrow && \downarrow && \downarrow\\ B & \underset{b}{\to} & C& \underset{}{\to} & B' & \underset{}{\to} & C'} \end{displaymath} All the vertical maps are cofibration weak equivalences, by assumption. Moreover, the bottom map $C\to C'$ is a weak equivalence, since it is the pushout of the weak equivalence $b a$ along the cofibration $c$. And since the zigzag \begin{displaymath} B \xrightarrow{b} C \to B' \overset{\sim}{\leftarrow} B \end{displaymath} represents the same morphism as \begin{displaymath} B \xrightarrow{b} C \overset{c}{\leftarrow} A \xrightarrow{a} B \end{displaymath} which represents $1_B$, we have that $B\xrightarrow{b} C \to B'$ is a weak equivalence. Thus, by 2-out-of-6, $b$ is a weak equivalence, hence so is $a$ by 2-out-of-3. \end{proof} Of course, there is a dual theorem for fibrations. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[William Dwyer]], [[Philip Hirschhorn]], [[Daniel Kan]], [[Jeff Smith]], \emph{[[Homotopy Limit Functors on Model Categories and Homotopical Categories]]} \item [[Andrew Blumberg]] and [[Michael Mandell]], \emph{Algebraic $K$-theory and abstract homotopy theory} \end{itemize} \begin{itemize}% \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{[[Categories and Sheaves]]} \end{itemize} [[!redirects two-out-of-six]] [[!redirects two-out-of-six-property]] [[!redirects 2-out-of-6 property]] [[!redirects 2-out-of-6-property]] [[!redirects 2-out-of-6]] \end{document}