\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{two-sided fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{twosided_fibrations}{}\section*{{Two-sided fibrations}}\label{twosided_fibrations} \noindent\hyperlink{twosided_fibrations_2}{Two-sided fibrations}\dotfill \pageref*{twosided_fibrations_2} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_2monads}{In terms of 2-monads}\dotfill \pageref*{in_terms_of_2monads} \linebreak \noindent\hyperlink{a_representable_definition}{A representable definition}\dotfill \pageref*{a_representable_definition} \linebreak \noindent\hyperlink{as_iterated_fibrations}{As iterated fibrations}\dotfill \pageref*{as_iterated_fibrations} \linebreak \noindent\hyperlink{twosided_discrete_fibrations}{Two-sided discrete fibrations}\dotfill \pageref*{twosided_discrete_fibrations} \linebreak \noindent\hyperlink{definition_2}{Definition}\dotfill \pageref*{definition_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{profunctors_and_collages}{Profunctors and collages}\dotfill \pageref*{profunctors_and_collages} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{twosided_fibrations_2}{}\subsection*{{Two-sided fibrations}}\label{twosided_fibrations_2} \hypertarget{idea}{}\subsubsection*{{Idea}}\label{idea} Recall that a functor $E \to B$ is called a [[fibration]] if its [[fibres]] $E_b$ vary (pseudo-)[[pseudofunctor|functorially]] in $b$. Taking \emph{fibre} to mean \emph{strict fibre} results in the notion of [[Grothendieck fibration]], while taking it to mean [[essential fibre]] gives the notion of [[Street fibration]]. Similarly, a \emph{two-sided fibration} $A \leftarrow E \to B$ is a pair of functors whose fibres $E(a,b)$ vary functorially in both $a$ and $b$ (contravariantly in one and covariantly in the other). \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Let $K$ be a [[bicategory]] with finite [[2-limits]], and recall that [[fibration in a 2-category|fibrations]] in $K$ may be defined in any of several ways. Each of these has an analogous version for two-sided fibrations. \hypertarget{in_terms_of_2monads}{}\paragraph*{{In terms of 2-monads}}\label{in_terms_of_2monads} Recall that (cloven) fibrations $E \to B$ in $K$ are the (pseudo)algebras for a (pseudo) 2-monad $L$ on $K/B$. For a morphism $p \colon E \to A$ in $K$, $L p$ is given by composing the [[span]] $A \overset{p}{\leftarrow} E \to 1$ with the canonical span $\Phi A = A \overset{dom}{\leftarrow} A^{\mathbf{2}} \overset{cod}{\to} A$, so that $L p \colon E/p \to A$ is the canonical projection. This can equivalently be described as the [[comma object]] $(1_A/p)$. This 2-monad is [[lax-idempotent 2-monad|lax-idempotent]], so that $p\colon E\to B$ is a fibration if and only if the unit $p\to L p$ has a left adjoint with invertible counit. More generally, the same construction gives a 2-monad $L$ on $Span K(B,A)$, whose algebras we call \textbf{left fibrations}. In [[Cat]], a span $C \overset{p}{\leftarrow} H \overset{q}{\to} D$ is a left fibration if $p$ is a cloven fibration whose chosen cartesian lifts are $q$-vertical. (Since we are working bicategorically, ``$q$-vertical'' means that they map to isomorphisms under $q$.) Dually, there is a colax-idempotent 2-monad $R$ on each $Span K(B,A)$ whose algebras are called \textbf{right fibrations}, the special case of $Span Cat(D,1)$ yielding cloven opfibrations. There is then a composite 2-monad $M$ that takes a span $E$ from $B$ to $A$ to $M E = \Phi A \circ E \circ \Phi B$, and $M$-algebras are called \textbf{two-sided fibrations}. Although $M$ is neither lax- nor colax-idempotent, it is still [[property-like 2-monad|property-like]]. \begin{prop} \label{TwoSidedFibrationsInCat}\hypertarget{TwoSidedFibrationsInCat}{} A two-sided Street fibration from $B$ to $A$ in $Cat$ is given by a span $p \colon E \to A$, $q \colon E \to B$ such that \begin{enumerate}% \item each $i \colon a \to p x$ in $A$ has a $p$-[[cartesian morphism|cartesian]] lift $\kappa_i \colon i^* x \to x$ in $E$ that is $q$-vertical (that is, $E$ is a left fibration) \item each $j \colon q x \to b$ in $B$ has a $q$-opcartesian lift $\kappa^j \colon x \to j_! x$ in $E$ that is $p$-vertical ($E$ is a right fibration) \item for every cartesian--opcartesian composite $i^* x \to x \to j_! x$ in $E$, the canonical morphism $j_! i^* x \to i^* j_! x$ is an [[isomorphism]]. \end{enumerate} \end{prop} \begin{proof} By the usual theory of [[distributive laws]], an $M$-algebra $m \colon M E \to E$ gives rise to $L$- and $R$-algebras $m \cdot (\Phi A \circ \eta^R_E)$ and $m \cdot (\eta^L_E \circ \Phi B)$, and conversely an $L$-algebra $\ell$ and an $R$-algebra $r$ underlie an $M$-algebra if and only if there is an isomorphism $r \cdot (\ell \circ \Phi B) \cong \ell \cdot (\Phi A \circ r)$ that makes $r$ a morphism of $L$-algebras. Now given $\ell$ and $r$, because $L$ is [[colax-idempotent]], there is a unique 2-cell $\bar r \colon r \cdot (\ell \circ \Phi B) \Rightarrow \ell \cdot (\Phi A \circ r)$ that makes $r$ a colax morphism of $L$-algebras. So we want to show that in the case of $Cat$, the components of this natural transformation are the canonical morphisms of (3). The 2-cell $\bar r$ is given by $\ell \cdot (\Phi A \circ r) \cdot (\epsilon \circ \Phi B)$, where $\epsilon$ is the counit of the adjunction $\eta^L_E \dashv \ell$. Its components are thus given, for each $i \colon a \to p x$ in $A$ and $j \colon p x \to b$ in $B$, by first factoring $\kappa^j \kappa_i$ through the opcartesian $i^* x \to j_! i^* x$ and then factoring the result through the cartesian $i^* j_! x \to j_! x$, to obtain exactly the canonical morphism $j_! i^* x \to i^* j_! x$. \end{proof} If $A \overset{p}{\leftarrow} E \overset{q}{\to} B$ is a two-sided fibration, then the operation sending $(a,b)$ to the corresponding (essential) fiber of $(p,q)$ defines a pseudofunctor $A^{op}\times B \to Cat$. The third condition in Proposition \ref{TwoSidedFibrationsInCat} corresponds to the ``interchange'' equality $(\alpha,1)(1,\beta) = (1,\beta)(\alpha,1)$ in $A^{op}\times B$. We write $Fib(B,A)$ for the 2-category of two-sided fibrations from $B$ to $A$. \hypertarget{a_representable_definition}{}\paragraph*{{A representable definition}}\label{a_representable_definition} Another definition of internal fibration is that a (cloven) fibration in $K$ is a morphism $p\colon E\to B$ such that $K(X,p)\colon K(X,E)\to K(X,B)$ is a (cloven) fibration in $Cat$, for any $X\in K$, and for any $X\to Y$ the corresponding square is a morphism of fibrations in $Cat$. To adapt this definition to two-sided fibrations, we therefore need only to say what is a two-sided fibration in $Cat$. For this we can use the characterization of Proposition \ref{TwoSidedFibrationsInCat}. \hypertarget{as_iterated_fibrations}{}\paragraph*{{As iterated fibrations}}\label{as_iterated_fibrations} Let $Fib(A) = Fib_K(A)$ denote the 2-category of fibrations over $A\in K$. It is a well-known fact (apparently due to Benabou) that a morphism in $Fib(A)$ is a fibration in $Fib(A)$ if and only if its underlying morphism in $K$ is a fibration. See [[fibration in a 2-category]]. Thus, for any fibration $r\colon C\to A$, we have $Fib_{Fib_K(A)}(r) \simeq Fib_K(C)$. Of course there is a dual result for opfibrations: for any opfibration $r\colon C\to A$ we have $Opf_{Opf_K(A)}(r) \simeq Opf_K(C)$. When we combine variance of iteration, however, we obtain two-sided fibrations. \begin{utheorem} A span $A \overset{p}{\leftarrow} E \overset{q}{\to} B$ is a two-sided fibration from $B$ to $A$ if and only if 1. $p\colon E\to A$ is a fibration and 1. $(p,q)\colon E\to A\times B$ is an opfibration in $Fib(A)$. \end{utheorem} \begin{proof} Recall that the projection $A\times B \to A$ is a fibration (and also an opfibration, although that is irrelevant here), and the cartesian 2-cells are precisely those whose component in $B$ is an isomorphism. Therefore, saying that $(p,q)$ is a \emph{morphism} in $Fib(A)$, i.e. that it preserves cartesian 2-cells, says precisely that $q$ takes $p$-cartesian 2-cells to isomorphisms. Now $q$ is an opfibration in $K$ iff $E\to (q/1_B)$ has a left adjoint with invertible counit in $K/B$, and $(p,q)$ is an opfibration in $Fib(A)$ iff $E\to ((p,q)/1_{A\times B})$ has a left adjoint with invertible counit in $Fib(A)/(A\times B)$. Of crucial importance is that here $((p,q)/1_{A\times B})$ denotes the comma object calculated \emph{in the 2-category $Fib(A)$}, or equivalently in $K/A$ (since monadic forgetful functors create limits), and it is easy to check that this is in fact \emph{equivalent} to the comma object $(q/1_B)$ calculated in $K$. Therefore, $(p,q)$ is an opfibration in $Fib(A)$ iff $q$ is an opfibration in $K$ and the left adjoint of $E\to (q/1_B)$ is a morphism in $Fib(A)$. It is then easy to check that this left adjoint is a morphism in $K/A$ iff $p$ inverts $q$-opcartesian arrows, and that it is a morphism of fibrations iff the final condition in Proposition \ref{TwoSidedFibrationsInCat} is satisfied. \end{proof} In particular, we have $Fib(B,A) \simeq Opf_{Fib(A)}(A\times B)$. By duality, $Fib(B,A) \simeq Fib_{Opf(B)}(A\times B)$, and therefore $Fib_{Opf(B)}(A\times B) \simeq Opf_{Fib(A)}(A\times B)$, a commutation result that is not immediately obvious. This result appears in \hyperlink{BournPenon}{Bourn--Penon}; it was noticed independently and recorded here by [[Mike Shulman]]. \hypertarget{twosided_discrete_fibrations}{}\subsection*{{Two-sided discrete fibrations}}\label{twosided_discrete_fibrations} \hypertarget{definition_2}{}\subsubsection*{{Definition}}\label{definition_2} A two-sided fibration $A \leftarrow E \to B$ in $K$ is \textbf{discrete} if it is [[discrete object|discrete]] as an object of $K/A \times B$. Since discreteness is a limit construction, it is created by monadic forgetful functors; hence this is equivalent to being discrete as an object of the 2-category $Fib(A,B)$ of two-sided fibrations. For Grothendieck fibrations in [[Cat]], this means the following. \begin{udefn} A \textbf{two-sided discrete fibration} is a [[span]] $q \colon E \to A$, $p \colon E \to B$ of [[categories]] and [[functors]] such that \begin{enumerate}% \item each $b \to p(e)$ in $B$ has a unique lift in $E$ that has codomain $e$ and is in the fiber over $q(e)$ \item each $q(e) \to a$ in $A$ has a unique lift in $E$ that has domain $e$ and is in the fiber over $p(e)$ \item for each $f\colon e \to e'$ in $E$, the codomain of the lift of $q(f)$ equals the domain of the lift of $p(f)$ and their composite is $f$. \end{enumerate} \end{udefn} We write \begin{displaymath} DFib(A,B) \subset Span(A,B) \end{displaymath} for the full [[subcategory]] on the 2-category $Span K(A,B)$ of [[span]]s on the 2-sided discrete fibrations. Since a morphism of spans between discrete fibrations is automatically a morphism of fibrations, this is also the full sub-2-category of the 2-category of two-sided fibrations $Fib(A,B)$. And since they are discrete objects, this 2-category is actually (equivalent to) a 1-category. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{profunctors_and_collages}{}\paragraph*{{Profunctors and collages}}\label{profunctors_and_collages} \begin{udef} Given a profunctor $F : B^{op} \times A \to Set$, its [[collage]] is the category $K_F$ over the [[interval category]] \begin{displaymath} p : K_F \to \Delta[1] \end{displaymath} With $p^{-1}(0) = B$, $p^{-1}(1) = A$, $K_F(b,a) = F(b,a)$ and $K_F(a,b) = \emptyset$ for all $b \in B$, $a \in A$, where \begin{itemize}% \item the composite of $b \stackrel{e}{\to} a$ with $a \stackrel{f}{\to} a'$ is given by $F(b,f)(e)$; \item the composite of $b \stackrel{g}{\to} b'$ with $b' \stackrel{e'}{\to} a'$ is given by $F(g, a')(e')$. \end{itemize} \end{udef} \begin{uprop} There is an [[equivalence of categories]] \begin{displaymath} [B^{op} \times A, Set] \stackrel{\simeq}{\to} DFib(A,B) \end{displaymath} \begin{displaymath} F \mapsto E_F \,, \end{displaymath} [[pseudo-natural transformation|pseudo-natural]] in $A, B \in Cat$, between [[profunctor]]s in [[Set]] and discrete fibrations from $A$ to $B$, where $E_F$ is the category whose \begin{itemize}% \item objects are [[section]]s $\sigma : \Delta[1] \to K_F$ of the [[collage]] $p : K_F \to \Delta[1]$ \item morphisms are [[natural transformation]]s between such sections; \item the two projections $A \leftarrow E_F \to B$ are the two functors induced by restriction along $\{0\} \to \Delta[1] \leftarrow \{1\}$. \end{itemize} \end{uprop} \begin{proof} First we write out $E_F$ in detail. In the following $b, b', \cdots \in B$ and $a,a', \dots \in A$. The objects of $E_F$ are morphisms \begin{displaymath} \itexarray{ b \\ {}^{\mathllap{e}}\downarrow \\ a } \end{displaymath} in $K_F$, hence triples $(b \in B, a \in A, e \in F(b,a))$. Morphisms are [[commuting diagram]]s \begin{displaymath} \itexarray{ b &\stackrel{g}{\to}& b' \\ {}^{\mathllap{e}}\downarrow && \downarrow^{\mathrlap{e'}} \\ a &\stackrel{f}{\to}& a' } \end{displaymath} in $K_F$. We may identify these with pairs $((b \stackrel{g}{\to}b') \in B,(a \stackrel{f}{\to} a') \in A)$ such that \begin{displaymath} F(g,a')(e') = F(b,f)(e) \,. \end{displaymath} We check that this construction yields a two-sided fibration. The three conditions are \begin{enumerate}% \item For \begin{displaymath} \itexarray{ b \\ {}^{\mathllap{e}}\downarrow \\ a } \end{displaymath} an object of $E_F$ and $a \stackrel{f}{\to} a'$ a morphism in $A$, we have that \begin{displaymath} \itexarray{ b &\stackrel{Id}{\to}& b \\ {}^{\mathllap{e}}\downarrow & & \downarrow^{\mathrlap{f e}} \\ a &\underset{f}{\to}& a' } \end{displaymath} is the unique lift to a morphism in $E$ that maps to $Id_b$. \item Analogously, for \begin{displaymath} \itexarray{ b' \\ {}^{\mathllap{e'}}\downarrow \\ a' } \end{displaymath} an object of $E_F$ and $b \stackrel{g}{\to} b'$ a morphism in $B$, we have that \begin{displaymath} \itexarray{ b &\stackrel{g}{\to}& b' \\ {}^{\mathllap{e' g}}\downarrow & & \downarrow^{\mathrlap{e'}} \\ a' &\underset{id}{\to}& a' } \end{displaymath} is the unique lift to a morphism in $E$ that maps to $Id_{a'}$. \item For \begin{displaymath} \itexarray{ b &\stackrel{g}{\to}& b' \\ {}^{\mathllap{e}}\downarrow && \downarrow^{\mathrlap{e'}} \\ a &\underset{f}{\to}& a' } \end{displaymath} an arbitrary morphism in $E_F$, these two unique lifts of its $A$- and its $B$-projection, respectively, are \begin{displaymath} \itexarray{ b &\stackrel{Id}{\to}& b \\ {}^{\mathllap{e}}\downarrow & & \downarrow^{\mathrlap{f e}} \\ a &\underset{f}{\to}& a' } \end{displaymath} and \begin{displaymath} \itexarray{ b &\stackrel{g}{\to}& b' \\ {}^{\mathllap{e' g}}\downarrow & & \downarrow^{\mathrlap{e'}} \\ a' &\underset{Id}{\to}& a' } \,. \end{displaymath} The codomain and domain do match, since $f e = e' g$ by the existence of the original morphism, and their composite is the original morphism \begin{displaymath} \itexarray{ b &\stackrel{Id}{\to}& b &\stackrel{g}{\to}& b \\ {}^{\mathllap{e}}\downarrow & & {}^{\mathllap{f e}}\downarrow^{\mathrlap{e' g}} && \downarrow^{\mathrlap{e'}} \\ a &\underset{f}{\to}& a' &\stackrel{Id}{\to}& a' } \,. \end{displaymath} \end{enumerate} To see that this construction indeed yields an equivalence of categories, define a functor $(A\leftarrow E \to B) \mapsto (F_E : B^{op} \times A \to Set)$ by setting \begin{itemize}% \item $F_E(b,a) := E_{b,a}$; \item for a morphism $b \stackrel{g}{\to} b'$ let $F_E(g,a') : F_E(b',a') \to F_E(b,a')$ be the function that sends $b' \stackrel{e'}{\to} a'$ to the domain of the unique lift of $b \stackrel{g}{\to} b'$ with this codomain and mapping to $Id_{a'}$; \item for a morphism $a \stackrel{f}{\to} a'$ let $F_E(b,f) : F_E(b,a) \to F_E(b,a')$ be the function that sends $b \stackrel{e}{\to} a$ to the codomain of the unique lift of $a \stackrel{f}{\to} a'$ with this domain and mapping to $Id_{b}$;. \end{itemize} One checks that this yields an equivalence of categories. \end{proof} \begin{ulemma} The category $E_F$ is equivalently characterized as being the [[comma category]] of the diagram $B \to K_F \leftarrow A$. \end{ulemma} Note that profunctors can also be characterized by their collages, these being the two-sided [[codiscrete cofibrations]]; and the collage corresponding to a two-sided fibration is its [[cocomma object]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Grothendieck fibration]], \item [[Street fibration]], \item [[discrete fibration]], \item [[fibration in a 2-category]], \item \textbf{two-sided fibration}, \item [[Conduche functor]] \item [[Cartesian fibration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion is originally discussed in \begin{itemize}% \item [[Ross Street]]. \emph{Fibrations and Yoneda's lemma in a 2-category}. In Category Seminar (Proc. Sem., Sydney, 1972/1973), pages 104 133. Lecture Notes in Math., Vol. 420. Springer, Berlin, 1974. \item [[Ross Street]], \emph{Fibrations in bicategories}. Cahiers Topologie G\'e{}om. Diff\'e{}rentielle, 21(2):111--160, 1980. (Corrections in 28(1):53--56, 1987) \end{itemize} Some further discussion of discrete fibrations can be found in \begin{itemize}% \item Dominique Bourn and Jacques Penon. \emph{2-cat\'e{}gories r\'e{}ductibles}. Preprint, University of Amiens Department of Mathematics, 1978. Reprinted as \emph{TAC Reprints} no. 19, 2010 (\href{http://www.tac.mta.ca/tac/reprints/articles/19/tr19abs.html}{link}). \end{itemize} Useful reviews are in \begin{itemize}% \item [[Emily Riehl]], \emph{Two-sided discrete fibrations in 2-categories and bicategories} 2010 (\href{http://www.math.harvard.edu/~eriehl/fibrations.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Fosco Loregian]] and [[Emily Riehl]], \emph{Categorical notions of fibration}, \href{https://arxiv.org/abs/1806.06129}{arxiv} \end{itemize} [[!redirects two-sided fibrations]] [[!redirects two-sided discrete fibration]] [[!redirects two-sided discrete fibrations]] [[!redirects 2-sided fibration]] [[!redirects 2-sided fibrations]] [[!redirects 2-sided discrete fibration]] [[!redirects 2-sided discrete fibrations]] \end{document}