\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{type I string theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{TadpoleCancellationAndSO32GUT}{Tadpole cancellation and $SO(32)$-GUT in Type I}\dotfill \pageref*{TadpoleCancellationAndSO32GUT} \linebreak \noindent\hyperlink{tadpole_cancellation_and_gut_in_type_i_2}{Tadpole cancellation and $SO(16) \times SO(16)$-GUT in Type I'}\dotfill \pageref*{tadpole_cancellation_and_gut_in_type_i_2} \linebreak \noindent\hyperlink{orbifolds_of_type_i}{Orbifolds of type I}\dotfill \pageref*{orbifolds_of_type_i} \linebreak \noindent\hyperlink{dualities}{Dualities}\dotfill \pageref*{dualities} \linebreak \noindent\hyperlink{stringstring_dualities}{String-string dualities}\dotfill \pageref*{stringstring_dualities} \linebreak \noindent\hyperlink{horavawitten_theory}{Horava-Witten theory}\dotfill \pageref*{horavawitten_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{type_i}{Type I'}\dotfill \pageref*{type_i} \linebreak \noindent\hyperlink{Phenomenology}{Phenomenology}\dotfill \pageref*{Phenomenology} \linebreak \noindent\hyperlink{duality}{Duality}\dotfill \pageref*{duality} \linebreak \noindent\hyperlink{geometric_engineering_of___scft}{Geometric engineering of $D=6$ $\mathcal{N}=(1,0)$ SCFT}\dotfill \pageref*{geometric_engineering_of___scft} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{type I string theory} is [[type IIB string theory]] on [[orientifold]] [[spacetimes]], hence on [[O9-planes]]. Its [[T-duality|T-dual]], called \emph{type I' string theory}, is [[type IIA string theory]] on [[O8-planes]], which under the [[duality between M-theory and type IIA string theory]] is M-theory [[KK-compactification|KK-compactified]] on the [[orientifold]] $S^1 \times S^1 \sslash \mathbb{Z}_2$ (see also \emph{[[M-theory on S1/G}HW times H/G\_ADE]]\_): \begin{displaymath} \itexarray{ M \\ {}^{ \mathllap{S^1 \times S^1/\mathbb{Z}_2 }}\big\downarrow \\ I' &\underset{T}{\leftrightarrow}& I } \end{displaymath} \begin{quote}% table from \hyperlink{BlumenhagenLustTheisen13}{BLT 13} \end{quote} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{TadpoleCancellationAndSO32GUT}{}\subsubsection*{{Tadpole cancellation and $SO(32)$-GUT in Type I}}\label{TadpoleCancellationAndSO32GUT} For type I string theory on [[flat orbifold|flat]] ([[toroidal orbifold|toroidal]]) [[target spacetime]] [[orientifolds]] $\mathbb{R}^{9,1}$ (i.e. for [[type IIB string theory]] on flat toroidal [[O9-planes]]) [[RR-field tadpole cancellation]] requires 32 [[D-branes]] (see \href{orientifold+plane#ContingOfDBranesOnOrientifolds}{this Remark} for counting D-branes in [[orientifolds]]) to cancel the [[O-plane charge]] of -32 (\href{orientifold+plane#OPlaneChargeForFlatOrientifolds}{here}). Under the [[duality between type I and heterotic string theory]] this translates to the [[semi-spin group|semi-spin]] [[gauge group]] [[SemiSpin(32)]] of [[heterotic string theory]]. Discussion of type-I [[string phenomenology]] and [[grand unified theory]] based on [[SO(32)]] type-I strings: (\hyperlink{MMRB86}{MMRB 86}, \hyperlink{IbanezMunozRigolin98}{Ibanez-Munoz-Rigolin 98}, \hyperlink{Yamatsu17}{Yamatsu 17}). \hypertarget{tadpole_cancellation_and_gut_in_type_i_2}{}\subsubsection*{{Tadpole cancellation and $SO(16) \times SO(16)$-GUT in Type I'}}\label{tadpole_cancellation_and_gut_in_type_i_2} For type I' string theory on [[flat orbifold|flat]] ([[toroidal orbifold|toroidal]]) [[target spacetime]] [[orientifolds]] $X^{8,1} \times \mathbb{S}^1/\mathbb{Z}_2$ (i.e. for [[type IIA string theory]] on two flat toroidal [[O8-planes]]) [[RR-field tadpole cancellation]] requires 16 [[D-branes]] (see \href{orientifold+plane#ContingOfDBranesOnOrientifolds}{this Remark} for counting D-branes in [[orientifolds]]) on each of the two [[O8-planes]] to cancel the total [[O-plane charge]] of $-32 = 2 \cdot (-16)$ (\href{orientifold+plane#OPlaneChargeForFlatOrientifolds}{here}). Discussion of [[Spin(16)]]-[[GUT]] phenomenology: (\ldots{}) \hypertarget{orbifolds_of_type_i}{}\subsubsection*{{Orbifolds of type I}}\label{orbifolds_of_type_i} Type I' on [[toroidal orbifold|toroidal]] [[orientifolds]] with [[ADE-singularities]] (e.g. \hyperlink{BergmanRodriguezGomez12}{Bergman\&Rodriguez-Gomez 12, Sec. 3}) [[duality in string theory|dual]] to [[heterotic M-theory on ADE-orbifolds]]. (\ldots{}) \hypertarget{dualities}{}\subsubsection*{{Dualities}}\label{dualities} \hypertarget{stringstring_dualities}{}\paragraph*{{String-string dualities}}\label{stringstring_dualities} See at \emph{[[duality between type I and heterotic string theory]]} \hypertarget{horavawitten_theory}{}\paragraph*{{Horava-Witten theory}}\label{horavawitten_theory} One considers the [[KK-compactification]] of [[M-theory]] on a [[cyclic group of order 2|Z/2]]-[[orbifold]] of a [[torus]], hence of the [[Cartesian product]] of two [[circles]] \begin{displaymath} \itexarray{ & S^1_A &\times& S^1_B \\ \text{radius}: & R_{11} && R_{10} } \end{displaymath} such that the reduction on the first factor $S^1_A$ corresponds to the [[duality between M-theory and type IIA string theory]], hence so that subsequent [[T-duality]] along the second factor yields [[type IIB string theory]] (in its [[F-theory]]-incarnation). Now the diffeomorphism which exchanges the two circle factors and hence should be a symmetry of M-theory is interpreted as [[S-duality]] in [[type II string theory]]: \begin{displaymath} IIB \overset{S}{\leftrightarrow} IIB \end{displaymath} \begin{quote}% graphics taken from \hyperlink{HoravaWitten95}{Horava-Witten 95, p. 15} \end{quote} If one considers this situation additionally with a $\mathbb{Z}/2\mathbb{Z}$-[[orbifold]] quotient of the first circle factor, one obtains the [[duality between M-theory and heterotic string theory]] ([[Horava-Witten theory]]). If instead one performs it on the second circle factor, one obtains [[type I string theory]]. Here in both cases the [[involution]] [[action]] is by [[reflection]] of the circle at a line through its center. Hence if we identify $S^1 \simeq \mathbb{R} / \mathbb{Z}$ then the action is by multiplication by /1 on the [[real line]]. In summary: M-theory on \begin{itemize}% \item $(S^1_A \sslash \mathbb{Z}_2 ) \times S^1_B$ yields [[heterotic string theory]] \item $S^1_A \times \left( S^1_B \sslash \mathbb{Z}_2 \right)$ yields [[type I string theory]] \end{itemize} Hence the [[S-duality]] that swaps the two circle factors corresponds to \emph{[[duality between type I and heterotic string theory]]}. \begin{displaymath} \itexarray{ HE &\overset{KK/\mathbb{Z}^A_2}{\leftrightarrow}& M &\overset{KK/\mathbb{Z}^B_2}{\leftrightarrow}& I' \\ \mathllap{T}\updownarrow && && \updownarrow \mathrlap{T} \\ HO && \underset{\phantom{A}S\phantom{A}}{\leftrightarrow} && I } \end{displaymath} \begin{quote}% graphics taken from \hyperlink{HoravaWitten95}{Horava-Witten 95, p. 16} \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include string theory and cohomology theory -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Luis Ibáñez]], [[Angel Uranga]], section 4.4.3 of: \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 \item [[Ralph Blumenhagen]], [[Dieter Lüst]], [[Stefan Theisen]], Section 9.4 and 10.6 of: \emph{Basic Concepts of String Theory} Part of the series Theoretical and Mathematical Physics, Springer 2013 \end{itemize} Relation to [[M-theory]] (via [[Horava-Witten theory]]): \begin{itemize}% \item [[Petr Hořava]], [[Edward Witten]], \emph{Heterotic and Type I string dynamics from eleven dimensions}, Nucl. Phys. B460 (1996) 506 (\href{http://arxiv.org/abs/hep-th/9510209}{arXiv:hep-th/9510209}) \item [[Petr Hořava]], [[Edward Witten]], \emph{Eleven dimensional supergravity on a manifold with boundary}, Nucl. Phys. B475 (1996) 94 (\href{http://arxiv.org/abs/hep-th/9603142}{arXiv:hep-th/9603142}) \end{itemize} A comprehensive discussion of the ([[differential cohomology|differential]]) [[cohomology|cohomological]] nature of general type II/type I [[orientifold]] backgrounds is in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} with details in \begin{itemize}% \item [[Daniel Freed]], \emph{Lectures on twisted K-theory and orientifolds} ([[FreedESI2012.pdf:file]]) \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Spin structures and superstrings}, Surveys in Differential Geometry, Volume 15 (2010) (\href{http://arxiv.org/abs/1007.4581}{arXiv:1007.4581}, \href{http://dx.doi.org/10.4310/SDG.2010.v15.n1.a4}{doi:10.4310/SDG.2010.v15.n1.a4}) \end{itemize} Related lecture notes / slides include \begin{itemize}% \item [[Jacques Distler]], \emph{Orientifolds and Twisted KR-Theory} (2008) (\href{http://www.perimeterinstitute.ca/pdf/files/731c5f3a-928f-453a-b569-db5c574d2a6c.pdf}{pdf}) \item [[Daniel Freed]], \emph{Dirac charge quantiation, K-theory, and orientifolds}, talk at a workshop \emph{Mathematical methods in general relativity and quantum field theories}, November, 2009 (\href{http://www.ma.utexas.edu/users/dafr/paris_nt.pdf}{pdf}) \item [[Greg Moore]], \emph{The RR-charge of an orientifold}, Oberwolfach talk 2010 (\href{https://www.physics.rutgers.edu/~gmoore/Oberwolfach_June2010_FINAL.pdf}{pdf}, [[MooreOrientifold2010.pdf:file]], \href{http://www.physics.rutgers.edu/~gmoore/AnnArbor_Feb2010_FINAL.ppt}{ppt}) \end{itemize} \hypertarget{type_i}{}\subsubsection*{{Type I'}}\label{type_i} Original articles on [[type I' string theory]]: \begin{itemize}% \item [[John Schwarz]], \emph{Some Properties of Type I' String Theory}, in: [[Mikhail Shifman]] (ed.), \emph{[[The Many Faces of the Superworld]]}, pp. 388-397 (2000) (\href{https://arxiv.org/abs/hep-th/9907061}{arXiv:hep-th/9907061}, \href{https://doi.org/10.1142/9789812793850_0023}{doi:10.1142/9789812793850\_0023}) \item Justin R. David, Avinash Dhar, Gautam Mandal, \emph{Probing Type I' String Theory Using D0 and D4-Branes}, Phys. Lett. B415 (1997) 135-143 (\href{https://arxiv.org/abs/hep-th/9707132}{arXiv:hep-th/9707132}) \end{itemize} Type I' on [[toroidal orbifold|toroidal]] [[orientifolds]] with [[ADE-singularities]] ([[duality in string theory|dual]] to [[heterotic M-theory on ADE-orbifolds]]): \begin{itemize}% \item [[Oren Bergman]], Diego Rodriguez-Gomez, \emph{5d quivers and their $AdS_6$ duals}, JHEP07 (2012) 171 (\href{https://arxiv.org/abs/1206.3503}{arxiv:1206.3503}) \end{itemize} \hypertarget{Phenomenology}{}\subsubsection*{{Phenomenology}}\label{Phenomenology} Type I [[string phenomenology]] and discussion of [[GUT]]s based on [[SO(32)]] type I strings (see also at \href{https://ncatlab.org/nlab/show/heterotic+string+theory#ReferencesPhenomenology}{heterotic phenomenology}): \begin{itemize}% \item H.S. Mani, A. Mukherjee, R. Ramachandran, A.P. Balachandran, \emph{Embedding of $SU(5)$ GUT in $SO(32)$ superstring theories}, Nuclear Physics B Volume 263, Issues 3–4, 27 January 1986, Pages 621-628 () \item [[Luis Ibáñez]], C. Muñoz, S. Rigolin, \emph{Aspects of Type I String Phenomenology}, Nucl.Phys. B553 (1999) 43-80 (\href{https://arxiv.org/abs/hep-ph/9812397}{arXiv:hep-ph/9812397}) \item Emilian Dudas, \emph{Theory and Phenomenology of Type I strings and M-theory}, Class. Quant. Grav.17:R41-R116, 2000 (\href{https://arxiv.org/abs/hep-ph/0006190}{arXiv:hep-ph/0006190}) \item Naoki Yamatsu, \emph{String-Inspired Special Grand Unification}, Progress of Theoretical and Experimental Physics, Volume 2017, Issue 10, 1 (\href{https://arxiv.org/abs/1708.02078}{arXiv:1708.02078}, \href{https://doi.org/10.1093/ptep/ptx135}{doi:10.1093/ptep/ptx135}) \end{itemize} \hypertarget{duality}{}\subsubsection*{{Duality}}\label{duality} Discussion of [[duality in string theory|duality]] with [[heterotic string theory]] includes the following. The original conjecture is due to \begin{itemize}% \item [[Edward Witten]], section 5 of \emph{[[String Theory Dynamics In Various Dimensions]]}, Nucl.Phys.B443:85-126 (1995) (\href{http://arxiv.org/abs/hep-th/9503124}{arXiv:hep-th/9503124}) \end{itemize} More details are then in \begin{itemize}% \item [[Joseph Polchinski]], [[Edward Witten]], \emph{Evidence for Heterotic - Type I String Duality}, Nucl.Phys.B460:525-540,1996 (\href{http://arxiv.org/abs/hep-th/9510169}{arXiv:hep-th/9510169}) \end{itemize} \hypertarget{geometric_engineering_of___scft}{}\subsubsection*{{Geometric engineering of $D=6$ $\mathcal{N}=(1,0)$ SCFT}}\label{geometric_engineering_of___scft} On [[D=6 N=(1,0) SCFTs]] via [[geometric engineering of QFT|geometric engineering]] on [[M5-branes]]/[[NS5-branes]] at D-, E-type [[ADE-singularities]], notably from [[M-theory on S1/G\_HW times H/G\_ADE]], hence from [[orbifolds]] of [[type I' string theory]] (see at \href{NS5-brane#NSHalfBranes}{half NS5-brane}): \begin{itemize}% \item Michele Del Zotto, [[Jonathan Heckman]], [[Alessandro Tomasiello]], [[Cumrun Vafa]], \emph{6d Conformal Matter}, JHEP02(2015)054 (\href{https://arxiv.org/abs/1407.6359}{arXiv:1407.6359}) \item [[Davide Gaiotto]], [[Alessandro Tomasiello]], \emph{Holography for $(1,0)$ theories in six dimensions}, JHEP12(2014)003 (\href{https://arxiv.org/abs/1404.0711}{arXiv:1404.0711}) \item Kantaro Ohmori, Hiroyuki Shimizu, \emph{$S^1/T^2$ Compactifications of 6d $\mathcal{N} = (1,0)$ Theories and Brane Webs}, J. High Energ. Phys. (2016) 2016: 24 (\href{https://arxiv.org/abs/1509.03195}{arXiv:1509.03195}) \item Hirotaka Hayashi, Sung-Soo Kim, Kimyeong Lee, Futoshi Yagi, \emph{6d SCFTs, 5d Dualities and Tao Web Diagrams}, JHEP05 (2019)203 (\href{https://arxiv.org/abs/1509.03300}{arXiv:1509.03300}) \item Ibrahima Bah, Achilleas Passias, [[Alessandro Tomasiello]], \emph{$AdS_5$ compactifications with punctures in massive IIA supergravity}, JHEP11 (2017)050 (\href{https://arxiv.org/abs/1704.07389}{arXiv:1704.07389}) \end{itemize} [[!redirects type I superstring]] [[!redirects type I superstring theory]] [[!redirects type I' string theory]] \end{document}