\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{type II geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{FiberwiseMetric}{By fiberwise metric on the generalized tangent bundle}\dotfill \pageref*{FiberwiseMetric} \linebreak \noindent\hyperlink{ReductionOfStructureGroup}{By reduction of the generalized tangent bundle}\dotfill \pageref*{ReductionOfStructureGroup} \linebreak \noindent\hyperlink{GeometricAndNonGeometric}{Geometric and ``non-geometric'' type II geometries}\dotfill \pageref*{GeometricAndNonGeometric} \linebreak \noindent\hyperlink{application_in_type_ii_supergravity}{Application in type II supergravity}\dotfill \pageref*{application_in_type_ii_supergravity} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesDoubledSupergeometry}{Doubled super-geometry}\dotfill \pageref*{ReferencesDoubledSupergeometry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Type II geometry} (often \emph{doubled geometry} as in ``[[double field theory]]'') is to [[Riemannian geometry]] as [[generalized complex geometry]] is to [[complex geometry]]. Where the latter is the [[geometry]] induced by [[reduction of the structure group]] of the [[generalized tangent bundle]] of an even dimensional [[manifold]] along the inclusion $U(d,d) \to O(2d,2d)$ of the indefinite [[unitary group]] into the [[orthogonal group]], type II geometry is the geometry induced by reduction along the inclusion of the product of [[orthogonal group|orthogonal groups]] \begin{displaymath} O(n) \times O(n) \to O(n,n) \,, \end{displaymath} which is the inclusion of the [[maximal compact subgroup]] into the [[Narain group]]. This notion takes its name from the fact that it describes a good bit of the geometry of [[type II supergravity]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The definition of type II geometry proceeds in direct analogy with that of [[Riemannian geometry]] in terms of [[orthogonal structure]]/[[vielbein]] fields on the tangent bundle, generalized here to the [[generalized tangent bundle]]: \begin{enumerate}% \item \hyperlink{FiberwiseMetric}{As a fiberwise metric on the generalized tangent bundle} \item \hyperlink{ReductionOfStructureGroup}{By reduction of the structure group of the generalized tangent bundle} \end{enumerate} \hypertarget{FiberwiseMetric}{}\subsubsection*{{By fiberwise metric on the generalized tangent bundle}}\label{FiberwiseMetric} (\ldots{}) \hypertarget{ReductionOfStructureGroup}{}\subsubsection*{{By reduction of the generalized tangent bundle}}\label{ReductionOfStructureGroup} We discuss how a type II geometry is the [[reduction of the structure group]] of the [[generalized tangent bundle]] along the inclusion $O(d) \times O(d) \to O(d,d)$. \begin{defn} \label{InclusionForTypeIIGeometry}\hypertarget{InclusionForTypeIIGeometry}{} Consider the [[Lie group]] inclusion \begin{displaymath} \mathrm{O}(d) \times \mathrm{O}(d) \to \mathrm{O}(d,d) \end{displaymath} of those [[orthogonal group|orthogonal transformations]], that preserve the positive definite part or the negative definite part of the [[bilinear form]] of signature $(d,d)$, respectively. If $\mathrm{O}(d,d)$ is presented as the group of $2d \times 2d$-[[matrix|matrices]] that preserve the [[bilinear form]] given by the $2d \times 2d$-matrix \begin{displaymath} \eta \coloneqq \left( \itexarray{ 0 & \mathrm{id}_d \\ \mathrm{id}_d & 0 } \right) \end{displaymath} then this inclusion sends a pair $(A_+, A_-)$ of [[orthogonal group|orthogonal]] $n \times n$-matrices to the matrix \begin{displaymath} (A_+ , A_-) \mapsto \frac{1}{\sqrt{2}} \left( \itexarray{ A_+ + A_- & A_+ - A_- \\ A_+ - A_- & A_+ + A_- } \right) \,. \end{displaymath} \end{defn} This inclusion of [[Lie groups]] induces the corresponding morphism of [[smooth infinity-groupoid|smooth]] [[moduli stacks]] of [[principal bundles]] \begin{displaymath} \mathbf{TypeII} : \mathbf{B}(\mathrm{O}(d) \times \mathrm{O}(d)) \to \mathbf{B} \mathrm{O}(d,d) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} There is a [[fiber sequence]] of [[smooth infinity-groupoid|smooth stacks]] \begin{displaymath} O(d) \backslash O(d,d) / O(d) \to \mathbf{B}(\mathrm{O}(d) \times \mathrm{O}(d)) \stackrel{\mathbf{TypeII}}{\to} \mathbf{B} \mathrm{O}(d,d) \,, \end{displaymath} where the fiber on the left is the [[coset space]] of the [[action]] of $O(d) \times O(d)$ on $O(d,d)$. \end{prop} \begin{defn} \label{}\hypertarget{}{} There is a canonical embedding \begin{displaymath} \mathrm{GL}(d) \hookrightarrow \mathrm{O}(d,d) \end{displaymath} of the [[general linear group]]. In the above matrix presentation this is given by sending \begin{displaymath} a \mapsto \left( \itexarray{ a & 0 \\ 0 & a^{-T} } \right) \,, \end{displaymath} where in the bottom right corner we have the [[transpose matrix|transpose]] of the inverse matrix of the invertble matrix $a$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Under inclusion of def. \ref{InclusionForTypeIIGeometry}, the [[tangent bundle]] of a $d$-[[dimension|dimensional]] [[manifold]] $X$ defines an $\mathrm{O}(d,d)$-[[cocycle]] \begin{displaymath} T X \oplus T^* X : X \stackrel{T X}{\to} \mathbf{B}\mathrm{GL}(d) \stackrel{}{\to} \mathbf{B} \mathrm{O}(d,d) \,. \end{displaymath} The [[vector bundle]] canonically associated to this composite cocycles may canonically be identified with the [[direct sum]] vector bundle $T X \oplus T^* X$, and so we will refer to this cocycle by these symbols, as indicated. This is also called the \textbf{[[generalized tangent bundle]]} of $X$. \end{defn} Therefore we may canonically consider the groupoid of $T X \oplus T^* X$-twisted $\mathbf{TypeII}$-structures, according to the general notion of [[twisted differential c-structures]]. More generally, instead of $E = T X \oplus T^* X$ one considers bundle [[extensions]] $E$ of the form \begin{displaymath} T^* X \to E \to T X \,. \end{displaymath} These may have structure froups in $O(n,n)$ but not in the inclusion $GL(n) \hookrightarrow O(n,n)$. For more on this see the section \emph{\hyperlink{GeometricAndNonGeometric}{Geometric and non-geometric type II geometries}} below. Accordingly, in all of the following $T X \oplus T^* X$ could be replaced by a more general extension $E$. \begin{defn} \label{}\hypertarget{}{} A \textbf{type II generalized vielbein} on a [[smooth manifold]] $X$ is a diagram \begin{displaymath} \itexarray{ X &&\stackrel{\widetilde(T X \oplus T^* X)}{\to}&& \mathbf{B}(O(n) \times O(n)) \\ & {}_{\mathllap{T X \oplus T^* X}}\searrow &\swArrow_{E}& \swarrow_{\mathrlap{\mathbf{TypeII}}} \\ && \mathbf{B} O(n,n) } \end{displaymath} in $\mathbf{H} =$ [[Smooth∞Grpd]], hence a cocycle in the smooth [[twisted cohomology]] \begin{displaymath} E \in \mathbf{TypeII}Struc(X) \coloneqq \mathbf{H}_{/\mathbf{B} O(n,n)}(T X \oplus T^* X, \mathbf{TypeII}) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[groupoid]] $\mathbf{TypeII}\mathrm{Struc}(X)$ is that of ``generalized vielbein fields'' on $X$, as considered for instance around equation (2.24) of (\hyperlink{GMPW}{GMPW}) (there only locally, but the globalization is evident). In particular, its set of equivalence classes is the set of type-II generalized geometry structures on $X$. \end{prop} \begin{proof} Over a local [[coordinate chart]] $\mathbb{R}^d \simeq U_i \hookrightarrow X$, the most general such generalized vielbein (hence the most general $\mathrm{O}(d,d)$-valued function) may be parameterized as \begin{displaymath} E = \frac{1}{2} \left( \itexarray{ (e_+ + e_-) + (e_+^{-T} - e_-^{-T})B & (e_+^{-T} - e_-^{-T}) \\ (e_+ - e_-) - (e_+^{-T} + e_-^{-T})B & (e_+^{-T} + e_-^{-T}) } \right) \,, \end{displaymath} where $e_+, e_- \in C^\infty(U_i, \mathrm{O}(d))$ are thought of as two [[vielbein|ordinary vielbein]] fields, and where $B$ is any smooth skew-symmetric $n \times n$-matrix valued function on $\mathbb{R}^d \simeq U_i$. By an $\mathrm{O}(d) \times \mathrm{O}(d)$-[[gauge transformation]] this can always be brought into a form where $e_+ = e_- =: \tfrac{1}{2}e$ such that \begin{displaymath} E = \left( \itexarray{ e & 0 \\ - e^{-T}B & e^{-T} } \right) \,. \end{displaymath} The corresponding ``generalized metric'' over $U_i$ is \begin{displaymath} E^T E = \left( \itexarray{ e^T & B e^{-1} \\ 0 & e^{-1} } \right) \left( \itexarray{ e & 0 \\ - e^{-T}B & e^{-T} } \right) = \left( \itexarray{ g - B g^{-1} B & B g^{-1} \\ - g^{-1} B & g^{-1} } \right) \,, \end{displaymath} where \begin{displaymath} g \coloneqq e^T e \end{displaymath} is the [[metric]] (over $\mathbb{R}^q \simeq U_i$ a smooth function with values in symmetric $n \times n$-matrices) given by the [[vielbein|ordinary vielbein]] $e$. \end{proof} \hypertarget{GeometricAndNonGeometric}{}\subsubsection*{{Geometric and ``non-geometric'' type II geometries}}\label{GeometricAndNonGeometric} \begin{defn} \label{}\hypertarget{}{} An element in $O(d,d)$ which in the canonical matrix presentation is of the block form \begin{displaymath} e^\omega \coloneqq \left( \itexarray{ 1_d & 0 \\ \omega & 1_d } \right) \end{displaymath} is called a \textbf{$B$-transform}. An element of the block form \begin{displaymath} e^\beta \coloneqq \left( \itexarray{ 1_d & \beta \\ 0 & 1_d } \right) \end{displaymath} is called a \textbf{$\beta$-transform}. The [[subgroup]] \begin{displaymath} G_{geom}(d) \hookrightarrow O(d,d) \end{displaymath} generated by $Gl(d) \hookrightarrow O(d,d)$ and the B-transforms, hence that of matrices with vaishing top right block is called the \textbf{geometric subgroup} (e.g. \hyperlink{GMPW}{GMPW, p.5}). A type II background where the structure group of the [[generalized tangent bundle]] is not in the inclusion of the geometric subgroup is often called a \textbf{non-geometric background} (e.g. \hyperlink{GMPW}{GMPW, section 5}). \end{defn} \hypertarget{application_in_type_ii_supergravity}{}\subsection*{{Application in type II supergravity}}\label{application_in_type_ii_supergravity} The [[target space]] geometry for [[type II superstrings]] in the NS-NS sector , [[type II supergravity]], is naturally encoded by type II geometry. \ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[exceptional generalized geometry]] \item [[non-geometric string theory vacua]] \item [[T-folds]] \item [[twisted smooth cohomology in string theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The appearance of type II geometry in [[type II supergravity]]/[[type II string theory]] is discussed for instance in \begin{itemize}% \item Ian Ellwood, \emph{NS-NS fluxes in Hitchin's generalized geometry} (\href{http://arxiv.org/abs/hep-th/0612100}{arXiv:hep-th/0612100}) \item [[Mariana Graña]], [[Ruben Minasian]], Michela Petrini, [[Daniel Waldram]], \emph{T-duality, Generalized Geometry and Non-Geometric Backgrounds} (\href{http://arxiv.org/abs/0807.4527}{arXiv:0807.4527}) \end{itemize} The genuine reformulation of type II supergravity as a $(O(d)\times O(d) \hookrightarrow O(d,d))$-gauge/gravity theory is in \begin{itemize}% \item Andr\'e{} Coimbra, Charles Strickland-Constable, [[Daniel Waldram]], \emph{Supergravity as Generalised Geometry I: Type II Theories} (\href{http://arxiv.org/abs/1107.1733}{arXiv:1107.1733}) \end{itemize} In \begin{itemize}% \item [[Chris Hull]], \emph{Generalised Geometry for M-Theory}, JHEP 0707:079,2007 (\href{http://arxiv.org/abs/hep-th/0701203}{arXiv:hep-th/0701203}) \end{itemize} the geometry of the reduction $O(d) \times O(d) \to O(d,d)$ was referred to as ``type I geometry'', with ``type II geometry'' instead referring to further [[U-duality]] group extensions, discussed at \emph{[[exceptional generalized geometry]]}. \hypertarget{ReferencesDoubledSupergeometry}{}\subsubsection*{{Doubled super-geometry}}\label{ReferencesDoubledSupergeometry} Much of the discussion of type II geometry has in fact been purely bosonic, ignoring the [[super-geometry]] of [[supergravity]]. In contrast, discussion combining [[doubled geometry]] with [[super-geometry]] includes the following: \begin{itemize}% \item Machiko Hatsuda, Kiyoshi Kamimura, [[Warren Siegel]], \emph{Superspace with manifest T-duality from type II superstring}, J. High Energ. Phys. (2014) 2014: 39 (\href{https://arxiv.org/abs/1403.3887}{arXiv:1403.3887}) \item [[Igor Bandos]], \emph{Superstring in doubled superspace}, Physics Letters B Volume 751, 17 December 2015, Pages 408-412 (\href{https://arxiv.org/abs/1507.07779}{arXiv:1507.07779}) \item [[Martin Cederwall]], \emph{Double supergeometry}, J. High Energ. Phys. (2016) 155 (\href{https://arxiv.org/abs/1603.04684}{arXiv:1603.04684}) \item Bojan Nikolić, Branislav Sazdović, \emph{T-dualization of type II superstring theory in double space}, Eur. Phys. J. C77 (2017) no.3, 197 (\href{https://arxiv.org/abs/1505.06044}{arXiv:1505.06044}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 6 of: \emph{[[schreiber:T-Duality from super Lie n-algebra cocycles for super p-branes]]}, \href{http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0005/}{ATMP Volume 22 (2018) Number 5} (\href{https://arxiv.org/abs/1611.06536}{arXiv:1611.06536}) \item Bojan Nikolić, Branislav Sazdović, \emph{Advantage of the second-order formalism in double space T-dualization of type II superstring} (\href{https://arxiv.org/abs/1907.03571}{arXiv:1907.03571}) \end{itemize} See also the references on the corresponding [[super-geometry]]-enhancement of [[exceptional generalized geometry]]: \emph{\href{exceptional+generalized+geometry#SuperExceptionalGeometryReferences}{Super-exceptional geometry -- References}} [[!redirects type II geometries]] [[!redirects double geometry]] [[!redirects doubled geometry]] [[!redirects double geometries]] [[!redirects doubled geometries]] [[!redirects double supergeometry]] [[!redirects double supergeometries]] [[!redirects double super-geometry]] [[!redirects double super-geometries]] [[!redirects doubled supergeometry]] [[!redirects doubled supergeometries]] [[!redirects doubled super-geometry]] [[!redirects doubled super-geometries]] \end{document}