\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{type II string theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{effective_qft}{Effective QFT}\dotfill \pageref*{effective_qft} \linebreak \noindent\hyperlink{anomaly_cancellation}{Anomaly cancellation}\dotfill \pageref*{anomaly_cancellation} \linebreak \noindent\hyperlink{background_fields_and_orientifolding}{Background fields and orientifolding}\dotfill \pageref*{background_fields_and_orientifolding} \linebreak \noindent\hyperlink{dualities}{Dualities}\dotfill \pageref*{dualities} \linebreak \noindent\hyperlink{duality_with_heterotic_string_theory}{Duality with heterotic string theory}\dotfill \pageref*{duality_with_heterotic_string_theory} \linebreak \noindent\hyperlink{duality_with_mtheory}{Duality with M-theory}\dotfill \pageref*{duality_with_mtheory} \linebreak \noindent\hyperlink{duality_with_ftheory}{Duality with F-theory}\dotfill \pageref*{duality_with_ftheory} \linebreak \noindent\hyperlink{holographic_dual}{Holographic dual}\dotfill \pageref*{holographic_dual} \linebreak \noindent\hyperlink{partition_function_and_elliptic_genus}{Partition function and elliptic genus}\dotfill \pageref*{partition_function_and_elliptic_genus} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{strings_and_sduality}{$(p,q)$-Strings and S-duality}\dotfill \pageref*{strings_and_sduality} \linebreak \noindent\hyperlink{quantum_anomalies}{Quantum anomalies}\dotfill \pageref*{quantum_anomalies} \linebreak \noindent\hyperlink{classical_solutions__vacua}{Classical solutions / vacua}\dotfill \pageref*{classical_solutions__vacua} \linebreak \noindent\hyperlink{holography}{Holography}\dotfill \pageref*{holography} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Perturbative [[string theory]] is defined in terms of certain classes of 2d [[CFT]]s. Depending on which class that is, one speaks of different \emph{types} of string theory. \begin{itemize}% \item In \emph{type II string theory} the CFTs in question are $(1,1)$-supersymmetric and defined on [[orientation|oriented]] [[worldsheet]]s; \item In \emph{[[heterotic string theory]]} the CFTs in question are $(0,1)$-supersymmetric and defined on [[orientation|oriented]] [[worldsheet]]s; \item In \ldots{} \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{effective_qft}{}\subsubsection*{{Effective QFT}}\label{effective_qft} The [[effective quantum field theory]] of type II string theory containts --besides [[type II supergravity]] -- the [[self-dual higher gauge theory]] of [[RR-fields]] and [[Kalb-Ramond field]]s. \hypertarget{anomaly_cancellation}{}\subsubsection*{{Anomaly cancellation}}\label{anomaly_cancellation} Apart from the [[Weyl anomaly]], which cancels for 10-dimensional [[target space]]s, the [[action functional]] of the [[string]]-[[sigma-model]] also in general has an \emph{\href{http://ncatlab.org/nlab/show/quantum+anomaly#AnomalousActionFunctional}{anomalous action functional}} , for two reasons: \begin{enumerate}% \item The [[holonomy|higher holonomy]] of the higher [[background gauge field]]s is in general not a function, but a [[section]] of a [[line bundle]]; \item The fermionic [[path integral]] over the [[worldsheet]]-[[spinor]]s of the [[superstring]] produces as section of a [[Pfaffian line bundle]]. \end{enumerate} In order for the action functional to be well-defined, the [[tensor product]] of these different anomaly [[line bundle]]s over the bosonic [[configuration space]] must have trivial class (as [[connection on a bundle|bundles with connection]], even). This gives rise to various further anomaly cancellation conditions: For the open [[type II string]] the condition is known as the [[Freed-Witten anomaly cancellation]] condition: it says that the restriction of the [[B-field]] to any [[D-brane]] must consistute the twist of a [[twisted spin{\tt \symbol{94}}c structure]] on the brane. A more detailed analysis of these type II anomalies is in (\hyperlink{DFMI}{DFMI}) and (\hyperlink{DFMII}{DFMII}). \hypertarget{background_fields_and_orientifolding}{}\subsubsection*{{Background fields and orientifolding}}\label{background_fields_and_orientifolding} [[!include string theory and cohomology theory -- table]] \begin{itemize}% \item [[intersecting D-brane models]] \end{itemize} \hypertarget{dualities}{}\subsubsection*{{Dualities}}\label{dualities} Some [[dualities in string theory]] involving [[type II string theory]]: \hypertarget{duality_with_heterotic_string_theory}{}\paragraph*{{Duality with heterotic string theory}}\label{duality_with_heterotic_string_theory} See \emph{[[duality between type II and heterotic string theory]]}. \hypertarget{duality_with_mtheory}{}\paragraph*{{Duality with M-theory}}\label{duality_with_mtheory} See \emph{[[duality between type IIA string theory and M-theory]]}. \hypertarget{duality_with_ftheory}{}\paragraph*{{Duality with F-theory}}\label{duality_with_ftheory} See \emph{[[F-theory]]}. \hypertarget{holographic_dual}{}\subsubsection*{{Holographic dual}}\label{holographic_dual} By a [[holographic principle]] realized in this case as [[AdS/CFT correspondence]] (see the references there), type II string theory is supposed to be dual to 4-dimensional [[super Yang-Mills theory]]. \hypertarget{partition_function_and_elliptic_genus}{}\subsubsection*{{Partition function and elliptic genus}}\label{partition_function_and_elliptic_genus} [[!include genera and partition functions - table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[string theory]] \begin{itemize}% \item [[heterotic string theory]] \begin{itemize}% \item [[Green-Schwarz mechanism]] \item [[dual heterotic string theory]] \item [[Witten genus]], [[string orientation of tmf]] \end{itemize} \item \textbf{type II string theory} [[Diaconescu-Moore-Witten anomaly]] [[type II geometry]] [[elliptic genus]] 4d [[super Yang-Mills theory]] \item \textbf{[[type I string theory]]} \item [[type 0 string theory]] \end{itemize} \item [[landscape of string theory vacua]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Physics textbook accounts include \begin{itemize}% \item [[Joseph Polchinski]], \emph{[[String theory]]}, volume II, section 10 \item [[Eric D'Hoker]], \emph{String theory -- lecture 7: Free superstrings} , in part 3 of [[Pierre Deligne]], [[Pavel Etingof]], [[Dan Freed]], L. Jeffrey, [[David Kazhdan]], [[John Morgan]], D.R. Morrison and [[Edward Witten]], eds. \emph{[[Quantum Fields and Strings]], A course for mathematicians}, 2 vols. Amer. Math. Soc. Providence 1999. (\href{http://www.math.ias.edu/qft}{web version}) \end{itemize} A comprehensive discussion of the ([[differential cohomology|differential]]) [[cohomology|cohomological]] nature of general type II/type I [[orientifold]] backgrounds is in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} with details in \begin{itemize}% \item [[Daniel Freed]], \emph{Lectures on twisted K-theory and orientifolds} ([[FreedESI2012.pdf:file]]) \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Spin structures and superstrings}, Surveys in Differential Geometry, Volume 15 (2010) (\href{http://arxiv.org/abs/1007.4581}{arXiv:1007.4581}, \href{http://dx.doi.org/10.4310/SDG.2010.v15.n1.a4}{doi:10.4310/SDG.2010.v15.n1.a4}) \end{itemize} Related lecture notes / slides include \begin{itemize}% \item [[Jacques Distler]], \emph{Orientifolds and Twisted KR-Theory} (2008) (\href{http://www.perimeterinstitute.ca/pdf/files/731c5f3a-928f-453a-b569-db5c574d2a6c.pdf}{pdf}) \item [[Daniel Freed]], \emph{Dirac charge quantiation, K-theory, and orientifolds}, talk at a workshop \emph{Mathematical methods in general relativity and quantum field theories}, November, 2009 (\href{http://www.ma.utexas.edu/users/dafr/paris_nt.pdf}{pdf}) \item [[Greg Moore]], \emph{The RR-charge of an orientifold} (\href{http://www.physics.rutgers.edu/~gmoore/AnnArbor_Feb2010_FINAL.ppt}{ppt}) \end{itemize} \hypertarget{strings_and_sduality}{}\subsubsection*{{$(p,q)$-Strings and S-duality}}\label{strings_and_sduality} \begin{itemize}% \item [[John Schwarz]], opening talk at \href{http://strings2013.sogang.ac.kr/}{Strings 2013}, (\href{http://strings2013.sogang.ac.kr/design/default/data/john_schwarz.pdf}{pdf}) \end{itemize} \hypertarget{quantum_anomalies}{}\subsubsection*{{Quantum anomalies}}\label{quantum_anomalies} Discussion of type II [[quantum anomalies]] is in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Pr\'e{}cis} in: [[Hisham Sati]], [[Urs Schreiber]] (eds.) \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics, AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv}, \href{http://www.ma.utexas.edu/users/dafr/bilbao.pdf}{slides}) \end{itemize} \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Spin structures and superstrings} (\href{http://arxiv.org/abs/1007.4581}{arXiv:1007.4581}) \end{itemize} An exposition is at \begin{itemize}% \item [[Dan Freed]], \emph{Lectures on K-theory and orientifolds} (2012) (\href{http://www.ma.utexas.edu/users/dafr/ESI.pdf}{pdf}) \end{itemize} \hypertarget{classical_solutions__vacua}{}\subsubsection*{{Classical solutions / vacua}}\label{classical_solutions__vacua} Description of type II backgrounds in terms of [[generalized complex geometry]]/[[Courant Lie 2-algebroids]] is in \begin{itemize}% \item [[Mariana Grana]], Francesco Orsi, \emph{$N=1$ vacua in Exceptional Generalized Geometry} (\href{http://arxiv.org/abs/1105.4855}{arXiv:1105.4855}) \end{itemize} \hypertarget{holography}{}\subsubsection*{{Holography}}\label{holography} A [[holographic principle|holographic]] description of type II by [[higher dimensional Chern-Simons theory]] is discussed in \begin{itemize}% \item Dmitriy Belov, [[Greg Moore]], \emph{Type II Actions from 11-Dimensional Chern-Simons Theories} (\href{http://arxiv.org/abs/hep-th/0611020}{arXiv:hep-th/0611020}) \end{itemize} [[!redirects type II superstring]] [[!redirects type II string]] [[!redirects type II superstrings]] [[!redirects type II strings]] [[!redirects type II superstring theory]] [[!redirects type IIA string theory]] [[!redirects type IIB string theory]] [[!redirects Type IIB string theory]] [[!redirects type IIA superstring theory]] [[!redirects type IIB superstring theory]] [[!redirects type IIA superstring]] [[!redirects type IIB superstring]] [[!redirects type IIA superstrings]] [[!redirects type IIB superstrings]] \end{document}