\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{type of types} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{formalizations}{Formalizations}\dotfill \pageref*{formalizations} \linebreak \noindent\hyperlink{RussellStyle}{Type Universe \`a{} la Russell}\dotfill \pageref*{RussellStyle} \linebreak \noindent\hyperlink{TarskiStyle}{Type Universe \`a{} la Tarski}\dotfill \pageref*{TarskiStyle} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{UniverseEnlargement}{Universe enlargement}\dotfill \pageref*{UniverseEnlargement} \linebreak \noindent\hyperlink{CategoricalSemantics}{Categorical semantics}\dotfill \pageref*{CategoricalSemantics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[type theory]], a \emph{type of (small) types} -- usually written $Type$ -- is a [[type]] whose [[terms]] are themselves [[type|types]]. Thus, it is a [[universe]] of (small) [[type|types]], a \emph{universe in type theory}. One also speaks of $Type$ as being a \emph{reflection} of the type system in itself (e.g. \hyperlink{MartinLoef74}{MartinL\"o{}f 74, p. 6}, \hyperlink{Palmgren}{Palmgren, pp. 2-3}, \hyperlink{Rathjen}{Rathjen, p. 1}, \hyperlink{Luo11}{Luo 11, section 2.5}, \hyperlink{Luo12}{Luo 12, p. 2}, \hyperlink{SEP}{Stanf. Enc. Phil.}), following the \emph{[[reflection principle]]} in [[set theory]]. In [[homotopy type theory]] a type of (small) types is what in [[(∞,1)-category theory|higher]] [[categorical semantics]] is interpreted as a (small) \emph{[[object classifier]]}. Thus, the type of types is a refinement of the [[type of propositions]] which only contains the [[(-1)-truncated]]/[[h-level]]-1 types (and is semantically a [[subobject classifier]]). In the presence of a type of types a [[judgement]] of the form \begin{displaymath} \vdash A : Type \end{displaymath} says that $A$ is a [[term]] of [[type]] $Type$, hence is a (small) [[type]] itself. More generally, a [[hypothetical judgement]] of the form \begin{displaymath} x : X \vdash A(x) : Type \end{displaymath} says that $A$ is an $X$-[[dependent type]]. In [[homotopy type theory]] the type of types $Type$ is often assumed to satisfy the [[univalence]] [[axiom]]. This is a reflection of the fact that in its [[categorical semantics]] as an [[object classifier]] is part of an [[internal (∞,1)-category]] in the ambient [[(∞,1)-topos]]: the one that as an [[indexed category]] is the small [[codomain fibration]]. [[Per Martin-Lof]]`s original type theory contained a type of \emph{all} types, which therefore in particular contained itself, i.e. one had $Type : Type$. But it was pointed out by [[Jean-Yves Girard]] that this was inconsistent; see [[Girard's paradox]]. Thus, modern type theories generally contain a hierarchy of types of types, with $Type_0 : Type_1$ and $Type_1 : Type_2$, etc. \hypertarget{formalizations}{}\subsection*{{Formalizations}}\label{formalizations} \hypertarget{RussellStyle}{}\subsubsection*{{Type Universe \`a{} la Russell}}\label{RussellStyle} A \textbf{universe \`a{} la Russell} is a [[type]] whose terms \emph{are} types. In the presence of a separate [[judgment]] ``$A \;type$'', this can be formulated as a [[natural deduction|deduction rule]] of the form \begin{displaymath} \frac{A:U}{A \;type} \end{displaymath} Thus, the \href{natural+deduction#IntroductionAndElimination}{type formers} have rules saying which universe they belong to, such as: \begin{displaymath} \frac{A:U\quad B:A\to U}{\Pi\, A\, B : U} \end{displaymath} With universes \`a{} la Russell, we can also omit the judgment ``$A\; type$'' and replace it everywhere by a judgment that A is a term of some universe. This is the approach taken by the [[Homotopy Type Theory -- Univalent Foundations of Mathematics|HoTT textbook]] and by [[Coq]]. \hypertarget{TarskiStyle}{}\subsubsection*{{Type Universe \`a{} la Tarski}}\label{TarskiStyle} A \textbf{universe \`a{} la Tarski} (\hyperlink{Hofmann}{Hofmann, section 2.1.6}, \hyperlink{Luo12}{Luo 12}, \hyperlink{Gallozzi14}{Gallozzi 14, p. 40}) is a type $U$ together with an ``interpretation'' operation allowing us to regard its [[terms]] as \emph{codes} or \emph{names} for actual types. Thus we have a rule such as \begin{displaymath} \frac{A:U}{El(A)\;type} \end{displaymath} saying that for each term $A$ of the type universe $U$ there is an actual type $El(A)$. (Conversely, with notation as used at \emph{[[object classifier in an (infinity,1)-topos]]}, one might write $A = 'El(A)'$ to indicate that $A$ is the \emph{name} of the type $El(A)$ in the type universe.) We usually also have operations on the universe corresponding to (but not identical to) type formers, such as \begin{displaymath} \frac{A:U\quad B:A\to U}{\pi(A, B) : U} \end{displaymath} with an [[equality]] $El(\pi(A,B))=\Pi \, El(A)\, El(B)$. Usually this latter equality (and those for other type formers) is a [[judgmental equality]]. If it is only an [[equivalence in homotopy type theory|equivalence]] (i.e. we have a rule which gives us a canonical term of the equivalence type), we may speak of a \textbf{weakly \`a{} la Tarski universe} (\hyperlink{Gallozzi14}{Gallozzi 14, p. 49-50}). We can give a slightly different definition of weakly \`a{} la Tarski universe using [[propositional equality]] and a larger universe. More precisely, we can consider two (or many) universes $U$ and $U'$ with the usual rules for the relative reflection $el(a):U'$ for any $a:U$, a choice of weakly or strongly a la Tarski [[computation rules]] for the reflections $El$ and $El'$, and a computation rule for the relative reflection el of $U$ inside $U'$ based on propositional equality, which gives us canonical elements of the identity types $Id_{U'}(\pi'(el(a),el(b)),el(\pi(a,b)))$ and similarly for the other type formers. If the containing universe is univalent the two definitions turn out to coincide. Universes defined internally via [[induction-recursion]] are (strongly) \`a{} la Tarski. Weakly \`a{} la Tarski universes are easier to obtain in [[semantics]] (see \hyperlink{CategoricalSemantics}{below}): they are somewhat more annoying to use, but probably suffice for most purposes. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{UniverseEnlargement}{}\subsubsection*{{Universe enlargement}}\label{UniverseEnlargement} Both [[Coq]] and [[Agda]] support [[universe polymorphism]] to deal with the issue of universe enlargement. Moreover, Coq supports [[typical ambiguity]]. \hypertarget{CategoricalSemantics}{}\subsubsection*{{Categorical semantics}}\label{CategoricalSemantics} [[univalence|Univalent]] type universes \hyperlink{RussellStyle}{\`a{} la Russell} have been shown to be interpreted in [[type-theoretic model categories]] presenting the base [[(∞,1)-topos]] [[∞Grpd]] (\hyperlink{KapulkinLumsdaineVoevodsky12}{Kapulkin-Lumsdaine-Voevodsky 12}) and more generally presenting [[(∞,1)-toposes]] of [[(∞,1)-presheaves]] over [[elegant Reedy categories]] (\hyperlink{Shulman13}{Shulman 13}). Discussion for general [[(∞,1)-toposes]] (of [[(∞,1)-sheaves]]) that should have implementation \hyperlink{TarskiStyle}{weakly \`a{} la Tarski} (\hyperlink{Gallozzi14}{Gallozzi 14, p. 49-50}) is in (\hyperlink{GepnerKock12}{Gepner-Kock 12}). For more on this see the respective sections at \emph{[[relation between type theory and category theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[resizing axiom]] \item [[universe polymorphism]] \item [[univalence]] \item [[Prop]], the [[type of propositions]], \begin{itemize}% \item [[subobject classifier]] \end{itemize} \item [[object classifier]] \item [[parametric polymorphism]] \item [[Girard's paradox]] \item [[Awodey's conjecture]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Some of the text above is adapted from the entry \emph{[[homotopytypetheory:universe]]} at the [[homotopytypetheory:HomePage|homotopy type theory web]]. Type universes in [[Martin-Löf type theory]] originate around \begin{itemize}% \item [[Per Martin-Löf]], \emph{An intuitionistic theory of types: predicative part}, In Logic Colloquium (1973), ed. H. E. Rose and J. C. Shepherdson (North-Holland, 1974), 73-118. (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.926}{web}) \end{itemize} Basic discussion of the syntax of type universes is in \begin{itemize}% \item [[Erik Palmgren]], \emph{On Universes in Type Theory} (\href{http://www2.math.uu.se/~palmgren/universe.pdf}{pdf}) \end{itemize} Definition of type universes weakly \`a{} la Tarski is in \begin{itemize}% \item [[Martin Hofmann]], section 2.1.6 of \emph{Syntax and semantics of dependent types} (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.8985}{web}) \item [[Zhaohui Luo]], \emph{Notes on Universes in Type Theory}, 2012 (\href{http://www.cs.rhul.ac.uk/home/zhaohui/universes.pdf}{pdf}) \item [[Cesare Gallozzi]], \emph{Constructive Set Theory from a Weak Tarski Universe}, MSc thesis (2014) (\href{http://xxx.tau.ac.il/abs/1411.5591}{arXiv:1411.5591}) \end{itemize} Detailed discussion of the type of types in [[Coq]] is in \begin{itemize}% \item [[Adam Chlipala]], \emph{\href{http://adam.chlipala.net/cpdt/}{Certified programming with dependent types}} -- \emph{\href{http://adam.chlipala.net/cpdt/html/Universes.html}{Library Universes}} \end{itemize} See also around slide 8 of the survey \begin{itemize}% \item Frade, \emph{Calculus of inductive constructions} (2008/2009) (\href{http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf}{pdf}) \end{itemize} A formal proof in [[homotopy type theory]] that the type of [[homotopy n-types]] is not itself a homotopy $n$-type (it is an $(n+1)$-type) is in \begin{itemize}% \item Nicolai Kraus, C. Sattler, \emph{The universe $\mathcal{U}_n$ is not an $n$-type} May 2013 (\href{http://red.cs.nott.ac.uk/~ngk/universes.pdf}{pdf}) \end{itemize} [[(∞,1)-category theory|(∞,1)-Categorical]] semantics for [[univalence|univalent]] type universes is discussed in \begin{itemize}% \item [[Chris Kapulkin]], [[Peter LeFanu Lumsdaine]], [[Vladimir Voevodsky]], \emph{The Simplicial Model of Univalent Foundations} (\href{http://arxiv.org/abs/1211.2851}{arXiv:1211.2851}) \item [[Michael Shulman]], \emph{The univalence axiom for elegant Reedy presheaves} (\href{http://arxiv.org/abs/1307.6248}{arXiv:1307.6248}) \item [[David Gepner]], [[Joachim Kock]], \emph{Univalence in locally cartesian closed ∞-categories} (\href{http://arxiv.org/abs/1208.1749}{arXiv:1208.1749}) \end{itemize} Relation to [[injective types]]: \begin{itemize}% \item [[Martín Escardó]], \emph{Injectives types in univalent mathematics} (\href{https://arxiv.org/abs/1903.01211}{arXiv:1903.01211}) \end{itemize} See also \begin{itemize}% \item [[Michael Rathjen]], \emph{The strength of Martin-L\"o{}f type theory with superuniverse. Part I} \href{https://www1.maths.leeds.ac.uk/~rathjen/Super.pdf}{pdf} \item Stanford Encyclopedia of Philosophy, \emph{\href{http://plato.stanford.edu/entries/type-theory/#6}{Type theory -- Extensions of type systems, Polymorphism, Paradoxes}} \item [[Zhaohui Luo]], \emph{Contextual analysis of word meanings in type-theoretical semantics}, in Pogodalla, Prost (eds.) \emph{Logical Aspects of Computational Linguistics}, 2011 (\href{http://www.cs.rhul.ac.uk/home/zhaohui/LACL11.pdf}{pdf}) \end{itemize} [[!redirects types of types]] [[!redirects universe of types]] [[!redirects universes of types]] [[!redirects Type]] [[!redirects type universe]] [[!redirects type universes]] [[!redirects universe in type theory]] [[!redirects universes in type theory]] \end{document}