\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ultraproduct} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{settheoretic}{Set-theoretic}\dotfill \pageref*{settheoretic} \linebreak \noindent\hyperlink{ultraproducts_of_structures}{Ultraproducts of structures}\dotfill \pageref*{ultraproducts_of_structures} \linebreak \noindent\hyperlink{ultraproducts_of_models}{Ultraproducts of models}\dotfill \pageref*{ultraproducts_of_models} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_functional_analysis}{In functional analysis}\dotfill \pageref*{in_functional_analysis} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{ultraproduct} construction is an important tool in [[model theory]] that permits to produce a new structure from an infinite family of structures. The construction has a decidedly `algebraic' flavor and hence occurs naturally in applications of model theory to [[algebra]]. It is closely related via the [[?o? ultraproduct theorem]] to the [[compactness theorem]]: suppose one is given a set of formulas $S$ in some first-order language and a family of structures such that any finite subset of formulas is modeled by all but a finite number of structures. Then an ultraproduct of those structures may be used to model the entire set $S$.\footnote{Due to the outstanding importance of the compactness theorem, it is possible to prove `almost all' results in model theory by the use of ultraproducts. This approach to model theory is pursued in \hyperlink{BellSlomson}{Bell-Slomson (1969)}. For contrast, compare with the more sober view of \hyperlink{Hodges93}{Hodges (1993)}.} In slightly greater detail, given a family of [[structures]] of the same signature in the sense of [[model theory]] (or more specially, [[universal algebra]]), one can (assuming the [[ultrafilter principle]], a weak form of the [[axiom of choice]]) use [[ultrafilters]] to form a certain [[congruence]] on the [[direct product]] and construct a [[quotient object]], a new structure of the same signature, called an \textbf{ultraproduct}. As long as the ultrafilter is [[free ultrafilter|free]] (contains the filter of cofinite subsets), the last sentence of the preceding paragraph is validated. An ultraproduct of some number of copies of the \emph{same} structure is called an \textbf{ultrapower}. Another important facet, somewhat reminiscent of [[Morita equivalence]], is the [[Keisler-Shelah theorem]]: Two structures are elementary equivalent $\mathfrak{A}\equiv\mathfrak{B}$ iff they have isomorphic ultrapowers: $\mathfrak{A}^I / \mathcal{U} \cong \mathfrak{B}^I / \mathcal{U}$ for some set $I$ and ultrafilter $\mathcal{U}$. This deep result says that the partially syntactic concept of \emph{elementary equivalence} can be characterized in purely semantic form with the help of ultrapowers. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} First we present the bare-bones set-theoretic construction; then we discuss structures and models. \hypertarget{settheoretic}{}\subsubsection*{{Set-theoretic}}\label{settheoretic} \begin{defn} \label{}\hypertarget{}{} Let $X$ be a set, and let $U$ be an [[ultrafilter]] on $X$, which may be regarded as an element $U: 1 \to \beta X$ of the [[Stone-Cech compactification]] $\beta X = \hom_{Bool}(2^X, 2)$ with its usual topology. The \textbf{ultrapower functor} over $U$ is the functor \begin{displaymath} Set/X \simeq Sh(X_{disc}) \stackrel{i_\ast}{\to} Sh(\beta X) \stackrel{U^\ast}{\to} Set \end{displaymath} where $i_\ast$ is the [[direct image functor]] between categories of [[sheaves]] induced from the [[inclusion map|inclusion]] $i: X \to \beta X$ of $X$ as a [[discrete space|discrete]] [[subspace]], and the [[inverse image functor]] $U^\ast$ is also known as the ``taking the [[stalk]]'' functor at the point $U \in \beta X$. \end{defn} Let us extract a more concrete description. Let $\{Y_x: x \in X\}$ be an $X$-indexed family of sets, which we can view as an object $Y \to X$ of $\Set/X$. We may view this object as a sheaf over $X$ as discrete space; as a presheaf, it takes an open set (an arbitrary subset $A \subseteq X$) to the set of sections over $A$ which is $\prod_{x \in A} Y_x$. The direct image functor $i_\ast$ takes this presheaf to the presheaf which sends an arbitrary open set $\mathcal{V} \subseteq \beta X$ to $\prod_{x \in X \cap \mathcal{V}} Y_x$, and then the stalk functor $U^\ast$ sends this to the [[filtered colimit]] \begin{displaymath} colim_{\mathcal{V} \ni U} \prod_{x \in X \cap \mathcal{V}} Y_x \end{displaymath} and since the basic opens $\mathcal{V}_A = \{U' \in \beta X: A \in U'\}$ with $A \in U$ are [[cofinal functor|cofinal]] in the system of open neighborhoods of $U$ (ordered by reverse inclusion), the colimit may be written more simply as \begin{displaymath} colim_{A \in U} \prod_{x \in A} Y_x \end{displaymath} and this is the \emph{ultraproduct}, often written as $\prod_{x \in X} Y_x/U$.\footnote{The quotient notation is traditional but (ever so slightly) misleading. If all the $Y_x$ are [[inhabited sets]], then all the maps $\prod_{x \in A} Y_x \to \prod_{x \in B} Y_x$ ($B \subseteq A$) are quotient maps and the ultraproduct is a quotient of the full product $\prod_{x \in X} Y_x$; there the notation is apt. If one of the $Y_x$ is empty, then the full product is empty and thus the ultraproduct is not such a quotient. But it is useful to allow for empty models (when they exist)! The correct definition which works for all cases is as we have it: a filtered colimit over restricted products. See \hyperlink{Makkai1980}{p. 186} and \hyperlink{MathOverflow2012}{this MO Discussion} for a discussion of this topic.} When all the fibers $Y_x$ are the same set $Z$, this is written as $Z^X/U$ and called an \emph{ultrapower} of $Z$. \hypertarget{ultraproducts_of_structures}{}\subsubsection*{{Ultraproducts of structures}}\label{ultraproducts_of_structures} Now suppose each $Y_x$ carries a structure specified by a [[signature (in logic)|signature]]; in other words, for each function symbol $f$ and predicate symbol $R$ of the signature there are specified operations and subsets \begin{displaymath} \omega_f: Y_x^{ar(f)} \to Y_x, \qquad \rho_R \rightarrowtail Y_x^{ar(R)} \end{displaymath} where $ar$ denotes arity (constants being considered function symbols of arity zero). Then of course the products $\prod_{a \in A} Y_x$ carry structures canonically induced from those on the $Y_x$. As all of the function symbols $f$ and predicate symbols $R$ have finite arity, and since the taking of filtered colimits commutes with finite limits in $Set$, we get a canonically induced structure on the ultraproduct $\prod_{x \in X} Y_x/U$. More briefly: since $U^\ast i_\ast$ preserves finite limits, it takes an $X$-indexed finitary structure $Y_x$ in $Set/X$ to a finitary structure of the same type in $Set$. Intuitively (and adopting language used by Lawvere), what is going on is that we have a variable structure varying over some domain $X$, and we consider a point $U$ of its compactification $\beta X$ as some kind of ``ideal point at infinity'', and then we ``freeze'' (or localize) the variation by passing to germs of the variation at that point $U$. Notice that if we replace the word ``ultrafilter'' by the word ``filter'', the general structural facts mentioned here would remain true. That is to say: if $F$ is a filter consisting of subsets of $X$, then the colimit $colim_{A \in F} \prod_{x \in A}$ (with such $A$ ordered by reverse inclusion) is still directed or filtered, and we would still get a structure of given finitary type by passing to the colimit. Here, instead of ultrapowers and ultraproducts, one speaks of \emph{reduced powers} and \emph{reduced products}. \hypertarget{ultraproducts_of_models}{}\subsubsection*{{Ultraproducts of models}}\label{ultraproducts_of_models} To be written. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} The [[hyperreal number]]s (\href{http://en.wikipedia.org/wiki/Hyperreal_numbers}{wikipedia}) and nonstandard integers in [[nonstandard analysis]] are obtained as [[denumerable set|countable]] ultrapowers with help of [[free ultrafilters]] on $\mathbb{N}$. Such ultrafilters contain all [[cofinite subset|cofinite]] subsets of integers, but not only them. See \href{http://en.wikipedia.org/wiki/Ultraproduct}{wikipedia:ultraproduct}. From Michael Barr's \href{http://archive.numdam.org/ARCHIVE/CTGDC/CTGDC_1986__27_2/CTGDC_1986__27_2_93_0/CTGDC_1986__27_2_93_0.pdf}{Models of Sketches} \begin{quote}% Unlike [[limits]] and [[colimits]], an ultraproduct is not defined by any [[universal mapping property]]. Of course, if the category has limits and ([[filtered colimit|filtered]]) colimits, then it has ultraproducts constructed as colimits of [[products]] \ldots{} But usually the category of models of a [[coherent theory]] (such as the theory of [[discrete field|fields]]) lacks products and hence does not have categorical ultraproducts. \end{quote} \hypertarget{in_functional_analysis}{}\subsubsection*{{In functional analysis}}\label{in_functional_analysis} (Appropriately-defined) ultrapowers of [[Banach space|Banach spaces]] allow one to embed an infinite-dimensional space $X \hookrightarrow X^{\mathcal{U}}$ inside a larger Banach space such that for every bounded family $(x_i)_{i \in I}$ and every ultrafilter $\mathcal{U}$ on $I$, the $\mathcal{U}$-limit $\lim_{i, \mathcal{U}}$ exists (just take the [[germ]] $[(x_i)]$). There are various ways to formalize this: Henson's [[positive bounded logic]], [[continuous logic]], or ad hoc variants (e.g. ``Banach space structures'', ``normed space structures'', etc.) As one might expect, things which are only ``approximately true'' inside $X$ become ``exactly true'' in $X^{\mathcal{U}$. For example, if $\lambda$ is an [[approximate eigenvalue]] (e.g. on the boundary of the [[spectrum of an operator|spectrum]]) for a bounded operator $T$, then the germ of the sequence of approximate eigenvectors of $\lambda$ becomes a \emph{bona fide} [[eigenvector]] with eigenvalue $\lambda$ for $T^{\mathcal{U}}$ on $X^{\mathcal{U}}$. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[model theory]] \item [[ultrafilter monad]] \item [[large cardinal]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Standard references in model theory for ultraproducts are \begin{itemize}% \item [[John Bell|J. L. Bell]], A. B. Slomson, \emph{Models and Ultraproducts: An Introduction} , North-Holland Amsterdam 1969. (Dover reprint) \item P. C. Eklof, \emph{Ultraproducts for Algebraists} , pp.105-137 in Barwise (ed.), \emph{Handbook of Mathematical Logic} , Elsevier Amsterdam 1977. \end{itemize} For a more recent textbook treatment see \begin{itemize}% \item [[Wilfrid Hodges]], \emph{Model Theory} , Cambridge University Press 1993. (sec. 9.5) \end{itemize} The categorical perspective on ultraproducts goes back to \begin{itemize}% \item T. Okhuma, \emph{Ultrapowers in categories} , Yokohama Math. J. \textbf{14} (1966) pp.17-37. \item S. Fakir, L. Haddad, \emph{Objets coh\'e{}rents et ultraproduits dans les cat\'e{}gories} , Journal of Algebra \textbf{21} (1972) pp.410--421. \end{itemize} For the vacuum engineering point of view of `freezing variation' \footnote{This perspective was apparently inspired by joined work with [[Miles Tierney]] on the use of [[forcing]] in the context of the [[continuum hypothesis]] in early topos theory.} in the context of non-standard analysis see \begin{itemize}% \item [[F. William Lawvere]], \emph{Variable sets etendu and variable structure in topoi} , Lecture notes University of Chicago 1975. \end{itemize} The following papers are relevant for understanding the ultraproduct construction via [[codensity monad|codensity monads]]: \begin{itemize}% \item D. P. Ellerman, \emph{Sheaves of structures and generalized ultraproducts} , Annals of Mathematical Logic \textbf{7} (1974) pp.163--195. \item J. F. Kennison, \emph{Triples and compact sheaf representation} , JPAA \textbf{20} (1981) pp.13-38. \item [[Tom Leinster]], \emph{Codensity and the Ultrafilter Monad} , TAC \textbf{28} no. 13 (2013) pp.332-370. (\href{http://www.tac.mta.ca/tac/volumes/28/13/28-13abs.html}{tac}) \end{itemize} For a fine point concerning the definition of ultraproducts: \begin{itemize}% \item \href{https://mathoverflow.net/q/105397}{MathOverflow2012} \item [[M. Makkai]], \emph{On full embeddings} , JPAA, 1980 \end{itemize} See also \begin{itemize}% \item [[M. Makkai]], \emph{Ultraproducts and categorical logic} , Lectures Notes in Math. \textbf{1130}, Springer 1985, pp. 222--309. \end{itemize} For ultraproducts in functional analysis see e.g. \begin{itemize}% \item Jose Iovino, \emph{Applications of model theory to functional analysis} \end{itemize} [[!redirects ultraproduct]] [[!redirects ultraproducts]] [[!redirects ultrapower]] [[!redirects ultrapowers]] [[!redirects reduced product]] [[!redirects reduced power]] [[!redirects reduced products]] [[!redirects reduced powers]] \end{document}