\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{unit type} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_a_positive_type}{As a positive type}\dotfill \pageref*{as_a_positive_type} \linebreak \noindent\hyperlink{as_a_negative_type}{As a negative type}\dotfill \pageref*{as_a_negative_type} \linebreak \noindent\hyperlink{positive_versus_negative}{Positive versus negative}\dotfill \pageref*{positive_versus_negative} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{categorical_semantics}{Categorical semantics}\dotfill \pageref*{categorical_semantics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[type theory]] the \emph{unit type} is the [[type]] with a unique [[term]]. It is the special case of a [[product type]] with no factors. In a [[model]] by [[categorical semantics]], this is a [[terminal object]]. In [[set theory]], it is a [[singleton]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Like any type in type theory, the unit type is specified by rules saying when we can introduce it as a type, how to construct terms of that type, how to use or ``eliminate'' terms of that type, and how to compute when we combine the constructors with the eliminators. The unit type, like the binary [[product type]], can be presented both as a [[positive type]] and a [[negative type]]. In both cases the rule for building the unit type is the same, namely ``it exists'': \begin{displaymath} \frac{ }{1\colon Type} \end{displaymath} \hypertarget{as_a_positive_type}{}\subsubsection*{{As a positive type}}\label{as_a_positive_type} Regarded as a positive type, we give primacy to the constructors, of which there is exactly one, denoted $()$ or $tt$. \begin{displaymath} \frac{ }{() \colon 1 } \end{displaymath} The eliminator now says that to use something of type $1$, it suffices to say what to do in the case when that thing is $()$. \begin{displaymath} \frac{\vdash c\colon C}{u\colon 1 \vdash let () = u in c \;\colon C} \end{displaymath} Obviously this is not very interesting, but this is what we get from the general rules of type theory in this degenerate case. In [[dependent type theory]], we should also allow $C$ to depend on the unit type $1$. We then have the [[∞-reduction]] rule: \begin{displaymath} let () = () in c \;\to_\beta\; c \end{displaymath} and (if we wish) the [[∞-reduction]] rule: \begin{displaymath} let () = u in c[()/z] \;\to_\eta\; c[u/z]. \end{displaymath} The $\beta$-reduction rule is simple. The $\eta$-reduction rule says that if $c$ is an expression involving a variable $z$ of type $1$, and we substitute $()$ for $z$ in $c$ and use that (with the eliminator) to define a term involving another term $u$ of type $1$, then the result is the same as what we would get by substituting $u$ for $z$ in $c$ directly. The positive presentation of the unit type is naturally expressed as an [[inductive type]]. In [[Coq]] syntax: \begin{verbatim}Inductive unit : Type := | tt : unit.\end{verbatim} (Coq then implements beta-reduction, but not eta-reduction. However, eta-equivalence is provable with the internally defined [[identity type]], using the dependent eliminator mentioned above.) \hypertarget{as_a_negative_type}{}\subsubsection*{{As a negative type}}\label{as_a_negative_type} A negative type is characterized by its eliminators, which is a little subtle for the unit type. But by analogy with binary [[product types]], which have two eliminators $\pi_1$ and $\pi_2$ when presented negatively, the negative unit type (a [[zero|nullary]] product) should have \emph{no eliminators at all}. To derive the constructors from this, we follow the general rule for negative types that to construct an element of $1$, it should suffice to specify how that element behaves under all the eliminators. Since there \emph{are} no eliminators, this means we have nothing to do; thus we have exactly one way to construct an element of $1$, by doing nothing: \begin{displaymath} \frac{ }{()\colon 1} \end{displaymath} There is no $\beta$-reduction rule, since there are no eliminators to compose with the constructor. However, there \emph{is} an $\eta$-conversion rule. In general, an $\eta$-[[redex]] consists of a constructor whose inputs are all obtained from eliminators. Here we have a constructor which has no inputs, so it is not a problem that we have no eliminators to fill them in with. Thus, the term $()\colon 1$ is an ``$\eta$-redex'', and it ``reduces'' to \emph{any} term of type $1$ at all: \begin{displaymath} () \;\to_\eta\; u \end{displaymath} This is obviously not a well-defined ``operation'', so in this case it is better to view $\eta$-conversion in terms of \emph{expansion}: \begin{displaymath} u \;\to_\eta\; (). \end{displaymath} \hypertarget{positive_versus_negative}{}\subsubsection*{{Positive versus negative}}\label{positive_versus_negative} In ordinary ``nonlinear'' type theory, the positive and negative unit types are equivalent. They manifestly have the same constructor, while we can define the positive eliminator in a trivial way as \begin{displaymath} let () = u in c \quad \coloneqq\quad c \end{displaymath} Note that just as for binary [[product types]], in order for this to be a well-typed definition of the \emph{dependent} eliminator in dependent type theory, we need to assume the $\eta$-conversion rule for the assumed negative unit type (at least, \href{/nlab/show/eta-conversion#Propositional}{propositionally}). Of course, the positive $\beta$-reduction rule holds by definition for the above defined eliminator. For the $\eta$-conversion rules, if we start from the negative presentation and define the positive eliminator as above, then $let () = u in c[()/z]$ is precisely $c[()/z]$, which is convertible to $c[u/z]$ by the negative $\eta$-conversion rule $() \;\leftrightarrow_\eta\; u$. Conversely, if we start from the positive presentation, then we have \begin{displaymath} () \;\leftrightarrow_\eta\; let () = u in () \;\leftrightarrow_\eta\; u \end{displaymath} where in the first conversion we use $c \coloneqq ()$ and in the second we use $c\coloneqq z$. As in the case of binary [[product types]], these translations require the [[contraction rule]] and the [[weakening rule]]; that is, they duplicate and discard terms. In [[linear logic]] these rules are disallowed, and therefore the positive and negative unit types become different. The positive product becomes ``one'' $\mathbf{1}$, while the negative product becomes ``top'' $\top$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{}\hypertarget{}{} In [[homotopy type theory]] the unit type is a [[contractible type]], and every contractible type is [[equivalence in homotopy type theory|equivalent]] to the unit type. \end{prop} \hypertarget{categorical_semantics}{}\subsection*{{Categorical semantics}}\label{categorical_semantics} Under [[categorical semantics]], a unit type satisfying both beta and eta conversions corresponds to a [[terminal object]] in a [[category]]. More precisely: \begin{itemize}% \item A terminal object may be used to interpret a unit type that validates both beta and eta rules, while \item the syntactic category of a type theory with a unit type has a terminal object, as long as the unit type satisfies both beta and eta rules. \end{itemize} Of course, the categorical notion of terminal object matches the \emph{negative} definition of a unit type most directly. In [[linear logic]], therefore, the categorical terminal object interprets ``top'' $\top$, while the unit object of an additional [[monoidal category|monoidal structure]] interprets ``one'' $\mathbf{1}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[product type]] \item [[empty type]] \item [[contractible type]] \end{itemize} [[!include homotopy n-types - table]] [[!redirects unit type]] [[!redirects unit types]] [[!redirects trivial type]] [[!redirects trivial types]] \end{document}