\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{unitary group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{HomotopyGroups}{Homotopy groups}\dotfill \pageref*{HomotopyGroups} \linebreak \noindent\hyperlink{in_infinite_dimension}{In infinite dimension}\dotfill \pageref*{in_infinite_dimension} \linebreak \noindent\hyperlink{SUn}{Relation to special unitary group}\dotfill \pageref*{SUn} \linebreak \noindent\hyperlink{RelationToOrthogonalSymplecticAndGeneralLinearGroup}{Relation to orthogonal, symplectic and general linear group}\dotfill \pageref*{RelationToOrthogonalSymplecticAndGeneralLinearGroup} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{coset_spaces}{Coset spaces}\dotfill \pageref*{coset_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For a [[natural number]] $n \in \mathbb{N}$, the \textbf{unitary group} $U(n)$ is the [[group]] of [[isometry|isometries]] of the $n$-dimensional complex [[Hilbert space]] $\mathbb{C}^n$. This is canonically identified with the group of $n \times n$ [[unitary matrices]]. More generally, for a Hilbert space $\mathcal{H}$, $U(\mathcal{H})$ is the group of [[unitary operator]]s on that Hilbert space. For the purposes of studying unitary representations of Lie groups, the topology is chosen to be the [[operator topology|strong operator topology]], although other topologies on $U(\mathcal{H})$ are frequently considered for other purposes. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The unitary groups are naturally [[topological group]]s and [[Lie groups]] (infinite dimensional if $\mathcal{H}$ is infinite dimensional). \begin{prop} \label{UnitaryGroupIsCompact}\hypertarget{UnitaryGroupIsCompact}{} The unitary group $U(n)$ is [[compact topological space]], hence in particular a [[compact Lie group]]. \end{prop} \hypertarget{HomotopyGroups}{}\subsubsection*{{Homotopy groups}}\label{HomotopyGroups} \begin{prop} \label{InclusionOfUnitaryGroupnIntoUnitaryGroupnPlusIneIsnMinus1Equivalence}\hypertarget{InclusionOfUnitaryGroupnIntoUnitaryGroupnPlusIneIsnMinus1Equivalence}{} For $n,N \in \mathbb{N}$, $n \leq N$, then the canonical inclusion of unitary groups \begin{displaymath} U(n) \hookrightarrow U(N) \end{displaymath} is a [[n-equivalence|2n-equivalence]], hence induces an [[isomorphism]] on [[homotopy groups]] in degrees $\lt 2n$ and a [[surjection]] in degree $2n$. \end{prop} \begin{proof} Consider the [[coset]] [[quotient]] [[projection]] \begin{displaymath} U(n) \longrightarrow U(n+1) \longrightarrow U(n+1)/U(n) \,. \end{displaymath} By prop. \ref{UnitaryGroupIsCompact} and by \href{coset#QuotientProjectionForCompactLieSubgroupIsPrincipal}{this corollary}, the projection $U(n+1)\to U(n+1)/U(n)$ is a [[Serre fibration]]. Furthermore, example \ref{nSphereAsUnitaryCosetSpace} identifies the [[coset]] with the [[n-sphere|(2n+1)-sphere]] \begin{displaymath} S^{2n+1}\simeq U(n+1)/U(n) \,. \end{displaymath} Therefore the [[long exact sequence of homotopy groups]] of the [[fiber sequence]] $U(n)\to U(n+1) \to S^{2n+1}$ is of the form \begin{displaymath} \cdots \to \pi_{\bullet+1}(S^{2n+1}) \longrightarrow \pi_\bullet(U(n)) \longrightarrow \pi_\bullet(U(n+1)) \longrightarrow \pi_\bullet(S^{2n+1}) \to \cdots \end{displaymath} Since $\pi_{\leq 2n}(S^{2n+1}) = 0$, this implies that \begin{displaymath} \pi_{\lt 2n}(U(n)) \overset{\simeq}{\longrightarrow} \pi_{\lt 2n}(U(n+1)) \end{displaymath} is an isomorphism and that \begin{displaymath} \pi_{2n}(U(n)) \longrightarrow \pi_{2n}(U(n+1)) \end{displaymath} is surjective. Hence now the statement follows by induction over $N-n$. \end{proof} It follows that the [[homotopy groups]] $\pi_k(U(n))$ are independent of $n$ for $n \gt \frac{k}{2}$ (the ``stable range''). So if $U = \underset{\longrightarrow}{\lim}_n U(n)$, then $\pi_k(U(n)) = \pi_k(U)$. By [[Bott periodicity]] we have \begin{displaymath} \itexarray{ \pi_{2k+0}(U) &= 0\\ \pi_{2k+1}(U) &= \mathbb{Z}. } \end{displaymath} In the unstable range for low $n$ they instead start out as follows \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l} $G$&$\pi_1$&$\pi_2$&$\pi_3$&$\pi_4$&$\pi_5$&$\pi_6$&$\pi_7$&$\pi_8$&$\pi_9$&$\pi_10$&$\pi_11$&$\pi_12$&$\pi_13$&$\pi_14$&$\pi_15$\\ \hline $U(1)$&$\mathbb{Z}$&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ $U(2)$&``&0&$\mathbb{Z}$&$\mathbb{Z}_2$&$\mathbb{Z}_2$&$\mathbb{Z}_{12}$&$\mathbb{Z}_2$&$\mathbb{Z}_2$&$\mathbb{Z}_3$&$\mathbb{Z}_{15}$&$\mathbb{Z}_2$&$\mathbb{Z}_2^{\oplus 2}$&$\mathbb{Z}_3\oplus\mathbb{Z}_{12}$&$\mathbb{Z}_2^{\oplus 2}\oplus\mathbb{Z}_{84}$&$\mathbb{Z}_2\oplus\mathbb{Z}_2$\\ $U(3)$&``&``&``&0&$\mathbb{Z}$&$\mathbb{Z}_6$&0&$\mathbb{Z}_{12}$&$\mathbb{Z}_3$&$\mathbb{Z}_{30}$&$\mathbb{Z}_4$&$\mathbb{Z}_{60}$&$\mathbb{Z}_6$&$\mathbb{Z}_2\oplus\mathbb{Z}_{84}$&$\mathbb{Z}_{36}$\\ $U(4)$&``&``&``&``&``&0&$\mathbb{Z}$&$\mathbb{Z}_{24}$&$\mathbb{Z}_2$&$\mathbb{Z}_2\oplus\mathbb{Z}_{120}$&$\mathbb{Z}_4$&$\mathbb{Z}_{60}$&$\mathbb{Z}_4$&$\mathbb{Z}_2\oplus\mathbb{Z}_{1680}$&$\mathbb{Z}_2\oplus\mathbb{Z}_{72}$\\ $U(5)$&``&``&``&``&``&``&``&0&$\mathbb{Z}$&$\mathbb{Z}_{120}$&0&$\mathbb{Z}_{360}$&$\mathbb{Z}_4$&$\mathbb{Z}_{1680}$&$\mathbb{Z}_6$\\ $U(6)$&``&``&``&``&``&``&``&``&``&0&$\mathbb{Z}$&$\mathbb{Z}_{720}$&$\mathbb{Z}_2$&$\mathbb{Z}_2\oplus\mathbb{Z}_{5040}$&$\mathbb{Z}_6$\\ $U(7)$&``&``&``&``&``&``&``&``&``&``&``&0&$\mathbb{Z}$&$\mathbb{Z}_{5040}$&0\\ $U(8)$&``&``&``&``&``&``&``&``&``&``&``&``&``&0&$\mathbb{Z}$\\ \end{tabular} Due to the [[unitary group\#SUn | relation to the special unitary group]], the higher homotopy groups of $U(n)$ and $SU(n)$ agree. The $U(2)$ row can be found using the fact that $SU(2)$ is diffeomorphic to $S^3$. The $U(3)$ row can be found using \hyperlink{MimuraToda63}{Mimura-Toda 63}. Otherwise the table is given in columns $\pi_k$, $k= 6,\ldots, 15$, and in rows $U(n)$, $n=4,\ldots,8$, by the [[Encyclopedic Dictionary of Mathematics]], Table 6.VII in Appendix A. \hypertarget{in_infinite_dimension}{}\subsubsection*{{In infinite dimension}}\label{in_infinite_dimension} A good discussion about the various topologies one might place on $U(\mathcal{H})$ and how they all agree and make $U(\mathcal{H})$ a [[Polish space|Polish]] group is in (\hyperlink{EspinozaUribe}{Espinoza-Uribe}). \begin{prop} \label{}\hypertarget{}{} For $\mathcal{H}$ a [[Hilbert space]], which can be either finite or infinite dimensional, the unitary group $U(\mathcal{H})$ and the [[general linear group]] $GL(\mathcal{H})$, regarded as [[topological group]]s, have the same [[homotopy type]]. Additionally, $U(\mathcal{H})$ is a [[maximal compact subgroup]] of $GL(\mathcal{H})$ for finite-dimensional $\mathcal{H}$. \end{prop} \begin{proof} By the [[Gram-Schmidt process]]. \end{proof} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Kuiper's theorem)} For a separable infinite-dimensional complex [[Hilbert space]] $\mathcal{H}$, the unitary group $U(\mathcal{H})$ is [[contractible]] in the [[norm topology]]. \end{theorem} See also [[Kuiper's theorem]]. Note that $U(\mathcal{H})$ is also contractible in the [[strong operator topology]] (due to Dixmier and Douady). \begin{remark} \label{}\hypertarget{}{} This in contrast to the finite dimensional situation. For $n \in \mathbb{N}$ ($n \ge 1$), $U(n)$ is not contractible. \end{remark} Write $B U(n)$ for the [[classifying space]] of the [[topological group]] $U(n)$. Inclusion of matrices into larger matrices gives a canonical sequence of inclusions \begin{displaymath} \cdots \to B U(n) \hookrightarrow B U(n+1) \hookrightarrow B U(n+2) \to \cdots \,. \end{displaymath} The [[homotopy limit|homotopy]] [[direct limit]] over this is written \begin{displaymath} B U := {\lim_\to}_n B U(n) \end{displaymath} or sometimes $B U(\infty)$. Notice that this is very different from $B U(\mathcal{H})$ for $\mathcal{H}$ an infinite-dimensional Hilbert space. See [[topological K-theory]] for more on this. \hypertarget{SUn}{}\subsubsection*{{Relation to special unitary group}}\label{SUn} \begin{prop} \label{}\hypertarget{}{} For all $n \in \mathbb{N}$, the [[unitary group]] $U(n)$ is a [[split exact sequence|split]] [[group extension]] of the [[circle group]] $U(1)$ by the [[special unitary group]] $SU(n)$ \begin{displaymath} SU(n) \to U(n) \to U(1) \,. \end{displaymath} Hence it is a [[semidirect product group]] \begin{displaymath} U(n) \simeq SU(n) \rtimes U(1) \,. \end{displaymath} \end{prop} \hypertarget{RelationToOrthogonalSymplecticAndGeneralLinearGroup}{}\subsubsection*{{Relation to orthogonal, symplectic and general linear group}}\label{RelationToOrthogonalSymplecticAndGeneralLinearGroup} The unitary group $U(n)$ is equivalently the [[intersection]] of the [[orthogonal group]] $O(2n)$, the [[symplectic group]] $Sp(2n,\mathbb{R})$ and the complex [[general linear group]] $GL(n,\mathbb{C})$ inside the real [[general linear group]] $GL(2n,\mathbb{R})$. Actually it is already the intersection of any two of these three, a fact also known as the ``2 out of 3-property'' of the unitary group. This intersection property makes a [[G-structure]] for $G = U(n)$ (an [[almost Hermitian structure]]) precisely a joint [[orthogonal structure]], [[almost symplectic structure]] and [[almost complex structure]]. In the [[integrability of G-structure|first-order integrable case]] this is precisely a joint [[orthogonal structure]] ([[Riemannian manifold]] structure), [[symplectic structure]] and [[complex structure]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} $U(1)$ is the [[circle group]]. \hypertarget{coset_spaces}{}\subsubsection*{{Coset spaces}}\label{coset_spaces} \begin{example} \label{nSphereAsUnitaryCosetSpace}\hypertarget{nSphereAsUnitaryCosetSpace}{} The [[n-spheres|(2n+1)-spheres]] are [[coset spaces]] of unitary groups \begin{displaymath} S^{2n+1} \simeq U(n+1)/U(n) \,. \end{displaymath} \end{example} \begin{example} \label{ComplexStiefelManifold}\hypertarget{ComplexStiefelManifold}{} For $n \leq k$, the [[coset]] \begin{displaymath} V_n(\mathbb{C}^k) \coloneqq U(k)/U(k-n) \end{displaymath} is called the $n$th \emph{real [[Stiefel manifold]]} of $\mathbb{C}^k$. \end{example} \begin{prop} \label{}\hypertarget{}{} The complex [[Stiefel manifold]] $V_n(\mathbb{C}^k)$ (example \ref{ComplexStiefelManifold}) is [[n-connected topological space|2(k-n)-connected]]. \end{prop} \begin{proof} Consider the [[coset]] [[quotient]] [[projection]] \begin{displaymath} U(k-n) \longrightarrow U(k) \longrightarrow U(k)/U(k-n) = V_n(\mathbb{C}^k) \,. \end{displaymath} By prop. \ref{UnitaryGroupIsCompact} and by \href{QuotientProjectionForCompactLieSubgroupIsPrincipal}{this corollary} the projection $U(k)\to U(k)/U(k-n)$ is a [[Serre fibration]]. Therefore there is induced the [[long exact sequence of homotopy groups]] of this [[fiber sequence]], and by prop. \ref{InclusionOfUnitaryGroupnIntoUnitaryGroupnPlusIneIsnMinus1Equivalence} it has the following form in degrees bounded by $n$: \begin{displaymath} \cdots \to \pi_{\bullet \leq 2(k-n)}(U(k-n)) \overset{epi}{\longrightarrow} \pi_{\bullet \leq 2(k-n)}(U(k)) \overset{0}{\longrightarrow} \pi_{\bullet \leq 2(k-n)}(V_n(\mathbb{C}^k)) \overset{0}{\longrightarrow} \pi_{\bullet-1 \lt 2(k-n)}(U(k)) \overset{\simeq}{\longrightarrow} \pi_{\bullet-1 \lt 2(k-n)}(U(k-n)) \to \cdots \,. \end{displaymath} This implies the claim. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[stable unitary group]] \item The subgroup of unitary matrices with [[determinant]] equal to 1 is the [[special unitary group]]. The [[quotient]] by the [[center]] is the [[projective unitary group]]. The space of equivalence classes of unitary matrices under conjugation is the [[symmetric product of circles]]. \item The analog of the unitary group for real metric spaces is the [[orthogonal group]]. \item similarly: [[quaternionic unitary group]] \item The [[Lie algebra]] is the [[unitary Lie algebra]]. \item [[unitary representation]] \item [[unitary operator]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item M. Mimura and H. Toda, \emph{Homotopy Groups of $SU(3)$, $SU(4)$ and $Sp(2)$}, J. Math. Kyoto Univ. Volume 3, Number 2 (1963), 217-250. (\href{http://projecteuclid.org/euclid.kjm/1250524818}{Euclid}) \item Jesus Espinoza, Bernardo Uribe, \emph{Topological properties of the unitary group}, JP Journal of Geometry and Topology \textbf{16} (2014) Issue 1, pp 45-55. \href{http://www.pphmj.com/abstract/8730.htm}{journal}, arXiv:\href{https://arxiv.org/abs/1407.1869v1}{1407.1869} \end{itemize} [[!redirects unitary group]] [[!redirects unitary groups]] [[!redirects U(n)]] \end{document}