\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{unitization of a C-star-algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_point_at_infinity}{The point at infinity}\dotfill \pageref*{the_point_at_infinity} \linebreak \noindent\hyperlink{ktheory_with_compact_support_on_nonunital_algebras}{K-theory with compact support on non-unital $C^\ast$-algebras}\dotfill \pageref*{ktheory_with_compact_support_on_nonunital_algebras} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the process of [[one-point compactification]] of possibly non-[[compact topological space|compact]] [[topological spaces]] from [[topology]] to [[non-commutative topology]] is the process of adding units to possibly [[non-unital ring|non-unital]] [[C\emph{-algebras]], thought of as formal duals of non-commutative spaces in [[noncommutative topology]].} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $(A, {\Vert \cdot \Vert_{A}})$ a non-[[unital algebra|unital]] [[C\emph{-algebra]], its \textbf{[[unitisation]]} is the $C^{\ast}$-algebra whose underlying vector space is the [[direct sum]]} \begin{displaymath} A^{+} \coloneqq A \oplus \mathbb{C} \end{displaymath} of $A$ with the field of [[complex numbers]], equipped with the multiplication law \begin{displaymath} (a_{1} \oplus z_{1}) \cdot (a_{2} \oplus z_{2}) \coloneqq (a_{1} a_{2} + z_{2} a_{1} + z_{1} a_{2}) \oplus z_{1} z_{2}, \end{displaymath} and the [[involution]] \begin{displaymath} (a \oplus z)^\ast \coloneqq a^{\ast} \oplus \overline{z} \end{displaymath} ([[complex conjugation]] is taking place on the right). This really is a $C^\ast$-algebra. The [[norm]] can be characterised as \begin{displaymath} {\Vert a \oplus z \Vert}_{A^{+}} = {\Vert L_{a} + z \cdot \operatorname{Id}_{A} \Vert}_{\mathcal{B}(A)} \coloneqq \sup_{b \in A, \Vert b \Vert_{A} \leq 1} \Vert a b + z b \Vert_{A}. \end{displaymath} if $A$ does not have a multiplicative unit. (Note that the operatornorm vanishes on $1_A\oplus -1_{\mathbb{C}}$ if $A$ does have a multiplicative unit). For $C^\ast$-algebras with a multiplicative unit one can show that the norm equals \begin{displaymath} \Vert a\oplus z \Vert_{A^+} = \max\{\|a+z1_A\|,|z|\} \end{displaymath} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{UnitisationGivesOnePointCompactification}\hypertarget{UnitisationGivesOnePointCompactification}{} For $X$ a [[locally compact topological space|locally compact]] [[Hausdorff topological space]] and $C(X)$ its possibly non-unital [[C\emph{-algebra]] [[algebra of functions|of functions]], then} \begin{displaymath} (C_0(X))^+ \simeq C_0(X) \oplus \mathbb{C} \simeq C(X^+) \end{displaymath} this is equivalently the unital $C^\ast$-algebra of functions on the [[one-point compactification]] of $X$. There is hence a canonical projection \begin{displaymath} i^\ast \colon C(X^+) \to \mathbb{C} \end{displaymath} The [[topological K-theory]] of $X$ is the [[kernel]] of the induced map in [[operator K-theory]] \begin{displaymath} K(X) \simeq ker(i^\ast) \simeq K(C_0(X)) \,. \end{displaymath} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_point_at_infinity}{}\subsubsection*{{The point at infinity}}\label{the_point_at_infinity} \begin{remark} \label{DualPointInclusion}\hypertarget{DualPointInclusion}{} The unitisation of $A$ comes with a canonical [[projection]] [[homomorphism]] of [[C\emph{-algebras]]} \begin{displaymath} i^\ast_A \colon A^+ \to \mathbb{C} \end{displaymath} given by \begin{displaymath} (a + z) \mapsto z \,. \end{displaymath} Dually this corresponds to the inclusion of the ``point at infinity''. \end{remark} \hypertarget{ktheory_with_compact_support_on_nonunital_algebras}{}\subsubsection*{{K-theory with compact support on non-unital $C^\ast$-algebras}}\label{ktheory_with_compact_support_on_nonunital_algebras} The map $i^\ast_A \colon A^+ \to \mathbb{C}$ of remark \ref{DualPointInclusion} induces a [[homomorphism]] of [[operator K-theory]] [[groups]] of the form \begin{displaymath} K(i^\ast_A) \colon K(A^+) \to K(\mathbb{C}) \simeq \mathbb{Z} \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} The [[kernel]] of this map is the operator K-theory of the original possibly non-unital $C^\ast$-algebra $A$: \begin{displaymath} K(A) \coloneqq ker(K(i^\ast_A)) \,. \end{displaymath} \end{defn} Heuristically it is clear that this is the ``compactly suppported'' K-theory of the possibly non-compact non-commutative space given by the algebra $A$. This statement has been made precise for instance in (\hyperlink{Emerson07}{Emerson 07}, theorem 3.8)): \begin{prop} \label{}\hypertarget{}{} For $X$ a [[locally compact topological space|locally compact]] [[Hausdorff topological space]], there is a [[natural isomorphism]] \begin{displaymath} K(X) \simeq [X,Fred]_{cs} \,, \end{displaymath} where on the right we [[homotopy classes]] of maps of [[compact support]] into the [[classifying space]] for K-theory (space of Fredholm operators). \end{prop} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Heath Emerson]], \emph{Equivariant representable K-theory} (\href{http://arxiv.org/abs/0710.1410}{arXiv:0710.1410}) \end{itemize} [[!redirects unitization of a C\emph{-algebra]] [[!redirects unitization of C}-algebras]] [[!redirects unitizations of C\emph{-algebras]] [[!redirects unitisation of a C}-algebra]] [[!redirects unitisation of C\emph{-algebras]] [[!redirects unitisations of C}-algebras]] [[!redirects unitization of a C-star algebra]] [[!redirects unitization of C-star algebras]] [[!redirects unitizations of C-star algebras]] [[!redirects unitisation of a C-star algebra]] [[!redirects unitisation of C-star algebras]] [[!redirects unitisations of C-star algebras]] [[!redirects unitization of a C-star-algebra]] [[!redirects unitization of C-star-algebras]] [[!redirects unitizations of C-star-algebras]] [[!redirects unitisation of a C-star-algebra]] [[!redirects unitisation of C-star-algebras]] [[!redirects unitisations of C-star-algebras]] \end{document}