\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universal Chern-Simons circle 7-bundle with connection} [[!redirects Chern-Simons circle 7-bundle with connection]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Chern-Simons circle 7-bundle} is the [[circle n-bundle with connection|circle 7-bundle with connection]] classified by the cocycle in degree-8 [[ordinary differential cohomology]] that is canonically associated to a [[string group]]-[[principal 2-bundle]] with [[connection on a 2-bundle|connection]]. The [[characteristic class]] called the second fractional [[Pontryagin class]] $\frac{1}{6}p_2 : \mathcal{B}String \to \mathcal{B}^8 \mathbb{Z}$ in [[Top]] on the [[classifying space]] of the [[string group]] has a smooth lift to the \begin{displaymath} \frac{1}{6} \mathbf{p}_2 : \mathbf{B}String \to \mathbf{B}^7 U(1) \end{displaymath} in $\mathbf{H} :=$ [[?LieGrpd]], mapping from the [[delooping]] [[∞-Lie groupoid]] of the [[string Lie 2-group]] to that of the . This is the of the degree 7 [[∞-Lie algebra cocycle]] $\mu_7 : \mathfrak{string} \to b^6 \mathbb{R}$ on the [[string Lie 2-algebra]] which classified the [[fivebrane Lie 6-algebra]]. Therefore, by [[∞-Chern-Weil theory]], there is a refinement of this morphism to [[connection on an ∞-bundle|∞-bundles with connection]] \begin{displaymath} \frac{1}{6}\hat \mathbf{p} : \mathbf{B}String_{conn} \to \mathbf{B}^7 U(1)_{conn} \end{displaymath} hence on [[cocycle]] [[∞-groupoid]]s \begin{displaymath} \frac{1}{6} \hat \mathbf{p} : \mathbf{H}_{conn}(X,\mathbf{B}String) \to \mathbf{H}_{diff}^8(X) \end{displaymath} a map from [[string Lie 2-group]]-[[principal 2-bundle]]s with [[connection on a 2-bundle|connection]] to [[circle n-bundle with connection|circle 7-bundles with connection]], hence degree 8 [[ordinary differential cohomology]]. For $(P,\nabla)$ a String-principal 2-bundle, we call the image $\frac{1}{6}\hat\mathbf{p}(\nabla) \in \mathbf{H}_{diff}(X,\mathbf{B}^z U(1))$ its \textbf{Chern-Simons circle 7-bundle with connection}. This is a differential refinement of the [[twisted cohomology|obstruction]] to lifting $P$ to a [[fivebrane Lie 6-group]]-bundle. By construction, the [[curvature]] 8-form of $\hat \mathbf{c}(\nabla)$ is the [[curvature characteristic form]] $\langle F_\nabla \wedge F_\nabla \wedge F_\nabla \wedge F_\nabla\rangle$ of $\nabla$ and accordingly the 7-form connection on $\hat \mathbf{c}(\nabla)$ is locally a [[Chern-Simons form]] $CS(\nabla)$ of $\nabla$. Therefore the [[higher parallel transport]] induced by $\frac{1}{6}\hat \mathbf{p}_2(\nabla)$ over 7-dimensional volumes $\phi : \Sigma \to X$ is the [[action functional]] of degree-7 [[∞-Chern-Simons theory]]. This is the analog of the way the [[Chern-Simons circle 3-bundle]] arises from Spin-principal bundles. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} Using the discusson at [[∞-Chern-Weil theory]] and in direct analogy to the constructin of the [[Chern-Simons circle 3-bundle]] we can model the [[(∞,1)-functor]] \begin{displaymath} \mathbf{H}_{conn}(X, \mathbf{B}String) \to \mathbf{H}_{conn}(X, \mathbf{B}^7 U(1)) \end{displaymath} by postcomposition with the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \exp(\mathfrak{string})_{conn} &\stackrel{\exp(\mu_7)_{conn}}{\to}& \exp(b^6 \mathbb{R})_{conn} \\ \downarrow && \downarrow \\ \mathbf{cosk}_7 \exp(\mathfrak{string})_{conn} &\to& \mathbf{B}^7 U(1)_{conn} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}String_{conn} } \end{displaymath} where $\mu_7 : \mathfrak{string} \to b^6 \mathbb{R}$ is the 7-cocycle that classifies the [[fivebrane Lie 6-algebra]]. For \begin{displaymath} \itexarray{ C(U) &\stackrel{g}{\to}& \mathbf{B}String_{conn} \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} an [[∞-anafunctor]] modelling a [[cocycle]] for a [[string 2-group]]-[[principal 2-bundle]] with [[connection on a 2-bundle]] the $\infty$-anafunctor composition \begin{displaymath} \itexarray{ && \exp(\mathfrak{string})_{conn} &\stackrel{\exp(\mu_7)_{conn}}{\to}& \exp(b^6 \mathbb{R})_{conn} \\ && \downarrow && \downarrow \\ C(V) &\stackrel{\hat g}{\to}& \mathbf{cosk}_7 \exp(\mathfrak{string})_{conn} &\to& \mathbf{B}^7 U(1)_{conn} \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ C(U) &\stackrel{g}{\to}& \mathbf{B}String_{conn} \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} produces a lift of the transition functions $g$ to $\mathbf{cosk}_7 \exp(\mathfrak{string})$. The string-cocycle is itself in first degree a collection of paths in $G$, in second a collection of surfaces with labels in $U(1)$. That lift corresponds to further resolving this to families \begin{displaymath} U_{i_1} \cap \cdots U_{i_k} \times \Delta^k \to G \end{displaymath} up to $k = 7$. That this is indeed always possible is the statement about [[Lie integration]] that $\mathbf{cosk}_7 \exp(\mathfrak{string}) \stackrel{\simeq}{\to} \mathbf{B}String$ is a weak equivalence, which in turn is due to the fact that the next nonvanishing [[homotopy group]] of $G = SO(n)$ after $\pi_3$ is $\pi_7$. The above composite [[∞-anafunctor]] is manifestly a degree 8-cocycle in [[Cech cohomology|Cech]]-[[Deligne cohomology]] given by \begin{displaymath} \left( CS_7(\sigma_i^* A) \,,\, \int_{\Delta^1} g_{i j}^*CS_7(A) \,,\, \int_{\Delta^2} g_{i j k}^*CS_7(A) \,,\, \int_{\Delta^3} \hat g_{i j k l}^*CS_7(A) \,,\, \int_{\Delta^5} \hat g_{i j k l m}^*CS_7(A) \,,\, \int_{\Delta^6} \hat g_{i j k l m n}^*CS_7(A) \,,\, \int_{\Delta^7} \hat g_{i j k l m n o}^* \mu(A) \right) \,, \end{displaymath} where $A$ is a connection form on the total space of the $Spin(n)$-[[principal bundle]] that the string bundle itself is lifted from and $CS_7$ is the [[Chern-Simons element]] in degree 7 defining the [[fivebrane Lie 6-algebra]]. (\ldots{}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item [[differential fivebrane structure]] \item [[dual heterotic string theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[universal Chern-Simons n-bundle]] \begin{itemize}% \item [[Chern-Simons circle 3-bundle]] \item \textbf{Chern-Simons circle 7-bundle} \end{itemize} \end{itemize} The CS 7-bundle serves as the [[extended Lagrangian]] for a \emph{[[7d Chern-Simons theory]]}. See there for more. \hypertarget{references}{}\subsection*{{References}}\label{references} The CS 7-bundle as an [[circle n-bundle with connection|circle 7-bundle with connection]] on the [[smooth infinity-groupoid|smooth]] [[moduli infinity-stack]] of [[string 2-group]]-[[connection on a 2-bundle|2-connections]] has been constructed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Hisham Sati]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]} \end{itemize} and identified as part of the [[11-dimensional supergravity]] Chern-Simons terms after [[KK-reduction]] on $S^4$ to [[7-dimensional supergravity]] (for [[AdS/CFT]] duality with the [[M5-brane]] [[worldvolume]] [[6d (2,0)-superconformal QFT|6d (2,0)-superfonformal]] [[schreiber:∞-Wess-Zumino-Witten theory]]) in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:7d Chern-Simons theory and the 5-brane]]} \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The moduli 3-stack of the C-field]]} \end{itemize} [[!redirects Chern-Simons circle 7-bundle]] [[!redirects Chern-Simons circle 7-bundles]] [[!redirects universal Chern-Simons circle 7-connection]] \end{document}