\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universal complex orientation on MU} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cobordism_theory}{}\paragraph*{{Cobordism theory}}\label{cobordism_theory} [[!include cobordism theory -- contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{connerfloydchern_classes_are_thom_classes}{Conner-Floyd-Chern classes are Thom classes}\dotfill \pageref*{connerfloydchern_classes_are_thom_classes} \linebreak \noindent\hyperlink{ComplexOrientationAsRingSpectrumMaps}{Complex orientation as ring spectrum maps}\dotfill \pageref*{ComplexOrientationAsRingSpectrumMaps} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} For $E$ a [[homotopy commutative ring spectrum]], there is a [[bijection]] between [[complex oriented cohomology theory|complex orientations]] on $E$ and homotopy ring spectrum homomorphism $MU \longrightarrow E$ from [[MU]]. Hence $MU$ is the universal [[complex oriented cohomology theory]]. (e.g \hyperlink{LurieLect6}{Lurie 10, lect. 6, theorem 8}, \hyperlink{Ravenel}{Ravenel, chapter 4, lemma 4.1.13}) \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{connerfloydchern_classes_are_thom_classes}{}\paragraph*{{Conner-Floyd-Chern classes are Thom classes}}\label{connerfloydchern_classes_are_thom_classes} We discuss that for $E$ a [[complex oriented cohomology theory]], then the $n$th universal [[Conner-Floyd-Chern class]] $c^E_n$ is in fact a universal [[Thom class]] for rank $n$ [[complex vector bundles]]. On the one hand this says that the choice of a [[complex oriented cohomology theory|complex orientation]] on $E$ indeed universally [[orientation in generalized cohomology|orients]] all [[complex vector bundles]]. On the other hand, we interpret this fact \hyperlink{ComplexOrientationAsRingSpectrumMaps}{below} as the [[unitality]] condition on a [[homomorphism]] of [[homotopy commutative ring spectra]] $M U \to E$ which represent that universal orienation. \begin{lemma} \label{SphereBundleBunminus1}\hypertarget{SphereBundleBunminus1}{} For $n \in \mathbb{N}$, the [[fiber sequence]] (\href{classifying+space#SphereFibrationOverInclusionOfClassifyingSpaces}{prop.}) \begin{displaymath} \itexarray{ S^{2n-1} &\longrightarrow& B U(n-1) \\ && \downarrow \\ && B U(n) } \end{displaymath} exhibits $B U(n-1)$ as the [[sphere bundle]] of the [[universal vector bundle|universal complex vector bundle]] over $B U(n)$. \end{lemma} \begin{proof} When exhibited by a fibration, here the vertical morphism is equivalently the quotient map \begin{displaymath} (E U(n))/U(n-1) \longrightarrow (E U(n))/U(n) \end{displaymath} (by the proof of \href{classifying+space#SphereFibrationOverInclusionOfClassifyingSpaces}{this prop.}). Now the [[universal principal bundle]] $E U(n)$ is (\href{classifying+space#EOn}{def.}) equivalently the colimit \begin{displaymath} E U(n) \simeq \underset{\longrightarrow}{\lim}_k U(k)/U(k-n) \,. \end{displaymath} Here each [[Stiefel manifold]]/[[coset spaces]] $U(k)/U(k-n)$ is equivalently the space of (complex) $n$-dimensional subspaces of $\mathbb{C}^k$ that are equipped with an orthonormal (hermitian) [[linear basis]]. The [[universal vector bundle]] \begin{displaymath} E U(n) \underset{U(n)}{\times} \mathbb{C}^n \simeq \underset{\longrightarrow}{\lim}_k U(k)/U(k-n) \underset{U(n)}{\times} \mathbb{C}^n \end{displaymath} has as fiber precisely the linear span of any such choice of basis. While the quotient $U(k)/(U(n-k)\times U(n))$ (the [[Grassmannian]]) divides out the entire choice of basis, the quotient $U(k)/(U(n-k) \times U(n-1))$ leaves the choice of precisly one unit vector. This is parameterized by the sphere $S^{2n-1}$ which is thereby identified as the [[unit sphere]] in the respective fiber of $E U(n) \underset{U(n)}{\times} \mathbb{C}^n$. \end{proof} In particular: \begin{lemma} \label{UniversalComplexLineBundleThomSpace}\hypertarget{UniversalComplexLineBundleThomSpace}{} The canonical map from the [[classifying space]] $B U(1) \simeq \mathbb{C}P^\infty$ (the inifnity [[complex projective space]]) to the [[Thom space]] of the [[universal vector bundle|universal]] [[complex line bundle]] is a [[weak homotopy equivalence]] \begin{displaymath} B U(1) \overset{\in W_{cl}}{\longrightarrow} M U(1) \coloneqq Th( E U(1) \underset{U(1)}{\times} \mathbb{C}) \,. \end{displaymath} \end{lemma} \begin{proof} Observe that the [[circle group]] $U(1)$ is naturally identified with the unit sphere in $\mathbb{C}$: $U (1) \simeq S(\mathbb{S})$. Therefore the sphere bundle of the universal complex line bundle is equivalently the $U(1)$-[[universal principal bundle]] \begin{displaymath} \begin{aligned} E U(1) \underset{U(1)}{\times} S(\mathbb{C}) & \simeq E U(1) \underset{U(1)}{\times} U(1) \\ & \simeq E U(1) \end{aligned} \,. \end{displaymath} But the [[universal principal bundle]] is [[contractible topological space|contractible]] \begin{displaymath} E U(1) \overset{\in W_{cl}}{\longrightarrow} \ast \,. \end{displaymath} (Alternatively this is the special case of lemma \ref{SphereBundleBunminus1} for $n = 0$.) Therefore the [[Thom space]] \begin{displaymath} \begin{aligned} Th( E U(1) \underset{U(1)}{\times} \mathbb{B} ) & \coloneqq D( E U(1) \underset{U(1)}{\times} \mathbb{B} ) / S( E U(1) \underset{U(1)}{\times} \mathbb{B} ) \\ & \overset{\in W_{cl}}{\longrightarrow} D( E U(1) \underset{U(1)}{\times} \mathbb{B} ) \\ & \overset{\in W_{cl}}{\longrightarrow} B U(1) \end{aligned} \,. \end{displaymath} \end{proof} \begin{lemma} \label{UniversalComplexVectorBundleThomSpace}\hypertarget{UniversalComplexVectorBundleThomSpace}{} For $E$ a [[generalized (Eilenberg-Steenrod) cohomology]] theory, then the $E$-[[reduced cohomology]] of the [[Thom space]] of the complex [[universal vector bundle]] is equivalently the $E$-[[relative cohomology]] of $B U(n)$ relative $B U(n-1)$ \begin{displaymath} \tilde E^\bullet( Th(E U(n) \underset{U(n)}{\times} \mathbb{C}^n ) ) \;\simeq\; E^\bullet( B U(n), B U(n-1)) \,. \end{displaymath} If $E$ is equipped with the structure of a [[complex oriented cohomology theory]] then \begin{displaymath} \tilde E^\bullet( Th(E U(n) \underset{U(n)}{\times} \mathbb{C}^n ) ) \simeq c^E_n \cdot (\pi_\bullet(E))[ [ c^E_1, \cdots, c^E_n ] ] \,, \end{displaymath} where the $c_i$ are the universal $E$-[[Conner-Floyd-Chern classes]]. \end{lemma} \begin{proof} Regarding the first statement: In view of lemma \ref{SphereBundleBunminus1} and using that the disk bundle is homotopy equivalent to the base space we have \begin{displaymath} \begin{aligned} \tilde E^\bullet( Th(E U(n) \underset{U(n)}{\times} \mathbb{C}^n ) ) & = E^\bullet( D(E U(n) \underset{U(n)}{\times} \mathbb{C}^n), S(E U(n) \underset{U(n)}{\times} \mathbb{C}^n) ) \\ & \simeq E^\bullet( E U(n), B U(n-1)) \end{aligned} \,. \end{displaymath} Regarding the second statement: the [[Conner-Floyd-Chern classes]] freely generate the $E$-cohomology of $B U(n)$ for all $n$ (\href{Conner-Floyd+Chern+class#ConnerFloyedClasses}{prop.}): \begin{displaymath} E^\bullet(B U(n)) \simeq \pi_\bullet(E)[ [ c^E_1, \cdots, c^E_n ] ] \,. \end{displaymath} and the restriction morphism \begin{displaymath} E^\bullet(B U(n)) \longrightarrow E^{\bullet}(B U(n-1)) \end{displaymath} projects out $c_n^E$. Since this is in particular a surjective map, the [[relative cohomology]] $E^\bullet( B U(n), B U(n-1) )$ is just the [[kernel]] of this map. \end{proof} \begin{prop} \label{ThomClassesCFClass}\hypertarget{ThomClassesCFClass}{} Let $E$ be a [[complex oriented cohomology theory]]. Then the $n$th $E$-[[Conner-Floyd-Chern class]] \begin{displaymath} c^E_n \in \tilde E(Th( E U(n) \underset{U(n)}{\times} \mathbb{C}^n )) \end{displaymath} (using the identification of lemma \ref{UniversalComplexVectorBundleThomSpace}) is a [[Thom class]] in that its restriction to the Thom space of any fiber is a suspension of a unit in $\pi_0(E)$. \end{prop} (\hyperlink{Lurie10}{Lurie 10, lecture 5, prop. 6}) \begin{proof} Since $B U(n)$ is [[connected topological space|connected]], it is sufficient to check the statement over the base point. Since that fixed fiber is canonically isomorphic to the direct sum of $n$ complex lines, we may equivalently check that the restriction of $c^E_n$ to the pullback of the universal rank $n$ bundle along \begin{displaymath} i \colon B U(1)^n \longrightarrow B U(n) \end{displaymath} satisfies the required condition. By the [[splitting principle]], that restriction is the product of the $n$-copies of the first $E$-Conner-Floyd-Chern class \begin{displaymath} i^\ast c_n \simeq ( (c_1^E)_1 \cdots (c_1^E)_n ) \,. \end{displaymath} Hence it is now sufficient to see that each factor restricts to a unit on the fiber, but that it precisely the condition that $c_1^E$ is a complex orientaton of $E$. In fact by def. \ref{StrictComplexOrientation} the restriction is even to $1 \in \pi_0(E)$. \end{proof} \hypertarget{ComplexOrientationAsRingSpectrumMaps}{}\paragraph*{{Complex orientation as ring spectrum maps}}\label{ComplexOrientationAsRingSpectrumMaps} For the present purpose: \begin{defn} \label{StrictComplexOrientation}\hypertarget{StrictComplexOrientation}{} For $E$ a [[generalized (Eilenberg-Steenrod) cohomology]] theory, then a \emph{[[complex oriented cohomology theory|complex orientation]]} on $E$ is a choice of element \begin{displaymath} c_1^E \in E^2(B U(1)) \end{displaymath} in the cohomology of the [[classifying space]] $B U(1)$ (given by the infinite [[complex projective space]]) such that its image under the restriction map \begin{displaymath} \phi \;\colon\; \tilde E^2( B U(1) ) \longrightarrow \tilde E^2 (S^2) \simeq \pi_0(E) \end{displaymath} is the unit \begin{displaymath} \phi(c_1^E) = 1 \,. \end{displaymath} \end{defn} (\hyperlink{Lurie10}{Lurie 10, lecture 4, def. 2}) \begin{remark} \label{}\hypertarget{}{} Often one just requires that $\phi(c_1^E)$ is \emph{a} [[unit]], i.e. an invertible element. However we are after identifying $c_1^E$ with the degree-2 component $M U(1) \to E_2$ of homtopy ring spectrum morphisms $M U \to E$, and by unitality these necessarily send $S^2 \to M U(1)$ to the unit $\iota_2 \;\colon\; S^2 \to E$ (up to homotopy). \end{remark} \begin{lemma} \label{S2SpectrumMapFromComplexOrientation}\hypertarget{S2SpectrumMapFromComplexOrientation}{} Let $E$ be a [[homotopy commutative ring spectrum]] (\href{Introduction+to+Stable+homotopy+theory+--+1-2#HomotopyCommutativeRingSpectrum}{def.}) equipped with a [[complex oriented cohomology theory|complex orientation]] (def. \ref{StrictComplexOrientation}) represented by a map \begin{displaymath} c_1^E \;\colon\; B U(1) \longrightarrow E_2 \,. \end{displaymath} Write $\{c^E_k\}_{k \in \mathbb{N}}$ for the induced [[Conner-Floyd-Chern classes]]. Then there exists a morphism of $S^2$-[[sequential spectra]] (\href{Introduction+to+Stable+homotopy+theory+--+1-1#SequentialTSpectra}{def.}) \begin{displaymath} M U \longrightarrow E \end{displaymath} whose component map $M U_{2n} \longrightarrow E_{2n}$ represents $c_n^E$ (under the identification of lemma \ref{UniversalComplexVectorBundleThomSpace}), for all $n \in \mathbb{N}$. \end{lemma} \begin{proof} Consider the standard model of [[MU]] as a sequential $S^2$-spectrum with component spaces the [[Thom spaces]] of the complex [[universal vector bundle]] \begin{displaymath} M U_{2n} \coloneqq Th( E U(n) \underset{U(n)}{\otimes} \mathbb{C}^n) \,. \end{displaymath} Notice that this is a [[CW-spectrum]] (\href{Introduction+to+Stable+homotopy+theory+--+1-1#CWSpectrum}{def.}, \href{Thom+space#ThomSpaceCWStructure}{lemma}). In order to get a homomorphism of $S^2$-[[sequential spectra]], we need to find representatives $f _{2n} \;\colon\; M U_{2n} \longrightarrow E_{2n}$ of $c^E_n$ (under the identification of lemma \ref{UniversalComplexVectorBundleThomSpace}) such that all the squares \begin{displaymath} \itexarray{ S^2 \wedge M U_{2n} &\overset{id \wedge f_{2n}}{\longrightarrow}& S^2 \wedge E_{2n} \\ \downarrow && \downarrow \\ M U_{2(n+1)} &\underset{f_{2(n+1)}}{\longrightarrow}& E_{2n+1} } \end{displaymath} commute strictly (not just up to homotopy). To begin with, pick a map \begin{displaymath} f_0 \;\colon\; M U_0 \simeq S^0 \longrightarrow E_0 \end{displaymath} that represents $c_0 = 1$. Assume then by [[induction]] that maps $f_{2k}$ have been found for $k \leq n$. Observe that we have a homotopy-commuting diagram of the form \begin{displaymath} \itexarray{ S^2 \wedge M U_{2n} &\overset{id \wedge f_{2n}}{\longrightarrow}& S^2 \wedge E_{2n} \\ \downarrow &\swArrow& \downarrow \\ M U_{2} \wedge M U_{2 n} &\overset{c_1 \wedge c_{n}}{\longrightarrow}& E_2 \wedge E_{2n} \\ \downarrow &\swArrow& \downarrow^{\mathrlap{\mu_{2,2n}}} \\ M U_{2(n+1)} &\underset{c_{n+1}}{\longrightarrow}& E_{2(n+1)} } \,, \end{displaymath} where the maps denoted $c_k$ are any representatives of the Chern classes of the same name, under the identification of lemma \ref{UniversalComplexVectorBundleThomSpace}. Here the homotopy in the top square exhibits the fact that $c_1^E$ is a complex orientation, while the homotopy in the bottom square exhibits the Whitney sum formula for Chern classes (\href{Chern+class#WhitneySumChernClasses}{prop.}). Now since $M U$ is a [[CW-spectrum]], the total left vertical morphism here is a (Serre-)cofibration, hence a [[Hurewicz cofibration]], hence satisfies the [[homotopy extension property]]. This means precisely that we may find a map $f_{2n+1} \colon M U_{2(n+1)} \longrightarrow E_{2(n+1)}$ homotopic to the given representative $c_{n+1}$ such that the required square commutes strictly. \end{proof} \begin{lemma} \label{HRingSpectrumS2SpectrumMapFromComplexOrientation}\hypertarget{HRingSpectrumS2SpectrumMapFromComplexOrientation}{} For $E$ a [[complex oriented cohomology theory|complex oriented]] [[homotopy commutative ring spectrum]], the morphism of spectra \begin{displaymath} c \;\colon\; M U \longrightarrow E \end{displaymath} that represents the complex orientation by lemma \ref{S2SpectrumMapFromComplexOrientation} is a [[homomorphism]] of [[homotopy commutative ring spectra]]. \end{lemma} (\hyperlink{Lurie10}{Lurie 10, lecture 6, prop. 6}) \begin{proof} The unitality condition demands that the diagram \begin{displaymath} \itexarray{ \mathbb{S} &\overset{}{\longrightarrow}& M U \\ & \searrow & \downarrow^{\mathrlap{c}} \\ && E } \end{displaymath} commutes in the [[stable homotopy category]] $Ho(Spectra)$. In components this means that \begin{displaymath} \itexarray{ S^{2n} &\overset{}{\longrightarrow}& M U_{2n} \\ & \searrow & \downarrow^{\mathrlap{c_n}} \\ && E_{2n} } \end{displaymath} commutes up to homotopy, hence that the restriction of $c_n$ to a fiber is the $2n$-fold suspension of the unit of $E_{2n}$. But this is the statement of prop. \ref{ThomClassesCFClass}: the Chern classes are universal Thom classes. Hence componentwise all these triangles commute up to some homotopy. Now we invoke the [[Milnor sequence]] for generalized cohomology of spectra (\href{lim^1+and+Milnor+sequences#CohomologyOfSpectraMilnorSequence}{prop.}) Observe that the [[tower]] of abelian groups $n \mapsto E^{n_1}(S^n)$ is actually constant ([[suspension isomorphism]]) hence trivially satisfies the [[Mittag-Leffler condition]] and so a homotopy of morphisms of spectra $\mathbb{S} \to E$ exists as soon as there are componentwise homotopies (\href{lim^1+and+Milnor+sequences#WithSomeLefflerTheHomsOfSpectraAreHomotopicIfComponentsAre}{cor.}). Next, the respect for the product demands that the square \begin{displaymath} \itexarray{ M U \wedge M U &\overset{c \wedge c}{\longrightarrow}& E \wedge E \\ \downarrow && \downarrow \\ M U &\underset{c}{\longrightarrow}& E } \end{displaymath} commutes in the [[stable homotopy category]] $Ho(Spectra)$. In order to rephrase this as a condition on the components of the ring spectra, regard this as happening in the [[homotopy category of a model category|homotopy category]] $Ho(OrthSpec(Top_{cg}))_{stable}$ of the [[model structure on orthogonal spectra]], which is [[equivalence of categories|equivalent]] to the [[stable homotopy category]] (\href{Introduction+to+Stable+homotopy+theory+--+1-2#SequentialSpectraQuillenEquivalence}{thm.}). Here the derived [[symmetric monoidal smash product of spectra]] is given by [[Day convolution]] (\href{Introduction+to+Stable+homotopy+theory+--+1-2#SsymModuleSymmetricSpectra}{def.}) and maps out of such a product are equivalently as in the above diagram is equivalent (\href{Introduction+to+Stable+homotopy+theory+--+1-2#DayConvolutionViaNaturalIsosInvolvingExternalTensorAndTensor}{cor.}) to a suitably equivariant collection diagrams of the form \begin{displaymath} \itexarray{ M U_{2 n_1} \wedge M U_{2 n_2} &\overset{c_{n_1} \wedge c_{n_2}}{\longrightarrow}& E_{2 n_1} \wedge E_{2 n_2} \\ \downarrow && \downarrow \\ M U_{2(n_1 + n_2)} &\underset{c_{(n_1 + n_2)}}{\longrightarrow}& E_{2 (n_1 + n_2)} } \,, \end{displaymath} where on the left we have the standard pairing operations for $M U$ (\href{Introduction+to+Stable+homotopy+theory+--+1-2#OrthogonalComplexThomSpectrum}{def.}) and on the right we have the given pairing on $E$. That this indeed commutes up to homotopy is the Whitney sum formula for Chern classes (\href{Chern+class#WhitneySumChernClasses}{prop.}). Hence again we have componentwise homotopies. And again the relevant [[Mittag-Leffler condition]] on $n \mapsto E^{n-1}((MU \wedge MU)_n)$-holds, by the nature of the universal [[Conner-Floyd classes]] (\href{Conner-Floyd+Chern+class#ConnerFloyedClasses}{prop.}). Therefore these componentwise homotopies imply the required homotopy of morphisms of spectra (\href{lim^1+and+Milnor+sequences#WithSomeLefflerTheHomsOfSpectraAreHomotopicIfComponentsAre}{cor.}). \end{proof} \begin{theorem} \label{}\hypertarget{}{} Let $E$ be a [[homotopy commutative ring spectrum]] (\href{Introduction+to+Stable+homotopy+theory+--+1-2#HomotopyCommutativeRingSpectrum}{def.}). Then the map \begin{displaymath} (M U \overset{c}{\longrightarrow} E) \;\mapsto\; (B U(1) \simeq M U_{2} \overset{c_1}{\longrightarrow} E_2) \end{displaymath} which sends a homomorphism $c$ of [[homotopy commutative ring spectra]] to its component map in degree 2, interpreted as a class on $B U(1)$ via lemma \ref{UniversalComplexLineBundleThomSpace}, constitutes a [[bijection]] from homotopy classes of homomorphisms of homotopy commutative ring spectra to complex orientations (def. \ref{StrictComplexOrientation}) on $E$. \end{theorem} (\hyperlink{Lurie10}{Lurie 10, lecture 6, theorem 8}) \begin{proof} By lemma \ref{S2SpectrumMapFromComplexOrientation} and lemma \ref{HRingSpectrumS2SpectrumMapFromComplexOrientation} the map is surjective, hence it only remains to show that it is injective. So let $c, c' \colon M U \to E$ be two morphisms of homotopy commutative ring spectra that have the same restriction, up to homotopy, to $c_1 \simeq c_1'\colon M U_2 \simeq B U(1)$. Since both are homotopy ring spectrum homomophisms, the restriction of their components $c_n, c'_n \colon M U_{2n} \to E_{2 n}$ to $B U(1)^{\wedge^n}$ is a product of $c_1 \simeq c'_1$, hence $c_n$ becomes homotopic to $c_n'$ after this restriction. But by the [[splitting principle]] this restriction is injective on cohomology classes, hence $c_n$ itself ist already homotopic to $c'_n$. It remains to see that these homotopies may be chosen compatibly such as to form a single homotopy of maps of spectra \begin{displaymath} f \;\colon\; M U \wedge I_+ \longrightarrow E \,, \end{displaymath} This follows due to the existence of the [[Milnor exact sequence|Milnor]] [[short exact sequence]] of the form \begin{displaymath} 0 \to \underset{\longleftarrow}{\lim}^1_n E^{-1}( \Sigma^{-2n} M U_{2n} ) \longrightarrow E^0(M U) \longrightarrow \underset{\longleftarrow}{\lim}_n E^0( \Sigma^{-2n} M U_{2n} ) \to 0 \end{displaymath} (\href{lim^1+and+Milnor+sequences#CohomologyOfSpectraMilnorSequence}{prop.}). Here the [[Mittag-Leffler condition]] is clearly satisfied (by lemma \ref{UniversalComplexVectorBundleThomSpace} all relevant maps are epimorphisms). Hence the [[lim{\tt \symbol{94}}1]]-term vanishes, and so by exactness the canonical morphism \begin{displaymath} E^0(M U) \overset{\simeq}{\longrightarrow} \underset{\longleftarrow}{\lim}_n E^0( \Sigma^{-2n} M U_{2n} ) \end{displaymath} is an [[isomorphism]]. This says that two homotopy classes of morphisms $M U \to E$ are equal precisely already if all their component morphisms are homotopic (represent the same cohomology class). \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Lazard's theorem]] \item [[Landweber exact functor theorem]] \item [[Quillen's theorem on MU]] \item [[Landweber-Novikov theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Frank Adams]], lemma 4.6, example 4.7 in \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Doug Ravenel]], \emph{[[Complex cobordism and stable homotopy groups of spheres]]},1986 \item [[Stanley Kochmann]], section 4.4 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, Lecture series 2010 (\href{http://www.math.harvard.edu/~lurie/252x.html}{web}), Lecture 6 \emph{MU and complex orientations} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture6.pdf}{pdf}) \end{itemize} [[!redirects MU and complex orientation]] [[!redirects complex orientation and MU]] [[!redirects complex orientations and MU]] [[!redirects universal complex orientation of MU]] [[!redirects MU and complex orientations]] \end{document}