\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universal construction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{example}{Example}\dotfill \pageref*{example} \linebreak \noindent\hyperlink{ConcreteExample}{Concrete examples}\dotfill \pageref*{ConcreteExample} \linebreak \noindent\hyperlink{classes_of_examples}{Classes of examples}\dotfill \pageref*{classes_of_examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Universal properties are commonly used in mathematics, often without mentioning the term ``universal property''. For example, if one were asked to give a map $\mathbb{R} \to \mathbb{R} \times \mathbb{C}$, they might write down something like $x \mapsto (x^2, x + i x)$. In effect, what is done is that a pair of maps $\mathbb{R} \to \mathbb{R}$ and $\mathbb{R} \to \mathbb{C}$ is given, namely $(x \mapsto x^2, x \mapsto x + i x)$. The \textbf{universal property} of the [[product]] says that giving a map to $A \times B$ is the same as giving a map to $A$ and a map to $B$, and moreover this correspondence is natural in some precise sense. Similarly, given [[rings]] $R$ and $S$, if we want to extend a [[ring homomorphism]] $R \to S$ to a homomorphism from the [[polynomial ring]] $R[x] \to S$, all we have to do is to specify an element of $S$ that we send $x$ to. In other words, a homomorphism $R[x] \to S$ is the same as a homomorphism $R \to S$ and an element of $S$. For it to be a universal property, just the existence of such a bijection is not sufficient. We will need some conditions to make sure the bijection is ``natural''. Abstractly, this says that the bijection is given by a [[natural isomorphism]] of certain [[functors]]. More concretely, by the [[Yoneda lemma]], this is equivalent to saying the bijection is ``mediated'' by some ``universal maps'', which is how universal properties are usually formulated. See \hyperlink{ConcreteExample}{Concrete examples} for more details. Recall that by the [[Yoneda lemma]], specifying how we can map in or out of an object uniquely determines the object up to [[isomorphism]]. So we can use these universal properties as \emph{definitions} of the constructions! These are known as \textbf{universal constructions}. Of course, these definitions are not actually ``constructions''. We still have to do the concrete constructions the good, old way to show that there are objects satisfying the universal property (or apply general theorems such as the [[adjoint functor theorem]]). \hypertarget{example}{}\subsection*{{Example}}\label{example} \hypertarget{ConcreteExample}{}\subsubsection*{{Concrete examples}}\label{ConcreteExample} We first look at a few concrete examples of universal properties. These are all special cases of the ones described below. \begin{example} \label{}\hypertarget{}{} The [[product]] of two objects (eg. sets, groups, rings etc.) is specified by the property that maps $f: X \to A \times B$ biject naturally with pairs of maps $(f_1: X \to A, f_2: X \to B)$. The naturality condition is that if $f: X \to A \times B$ corresponds to $f_1: X \to A, f_2: X \to B$, and $g: Y \to X$ is a map, then $f \circ g$ corresponds to $f_1 \circ g$ and $f_2 \circ g$, so that the bijection respects composition. In particular, the [[identity map]] $id: A \times B \to A \times B$ corresponds to a pair of [[projection maps]] $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$. Then if $f: X \to A \times B$ is a map, then by naturality, it corresponds to $\pi_1 \circ f: X \to A$ and $\pi_2 \circ f: X \to B$. Suppose we are not given a bijection, but just an object $P$ with maps $\pi_1: P \to A$ and $\pi_2: P \to B$. Then as above, we obtain a function from maps $X \to P$ to pairs of maps $X \to A, X \to B$ by composition. This makes $P$ into the product of $A$ and $B$ exactly when this function is a bijection, ie. for any pair of maps $f_1 : X \to A, f_2: X \to B$, there is a unique map $f: X \to P$ whose compositions with $\pi_1, \pi_2$ are $f_1, f_2$ respectively (naturality is easy to check). (The experienced reader will notice that this is just a special case of the [[Yoneda lemma]]) Thus, the universal property can be stated as follows: $C$ is a product of $A$ and $B$ if there exists maps $\pi_1: C \to A$ and $\pi_2: C \to B$ such that given any pair of maps $f_1: X \to A$ and $f_2: X \to B$, there is a unique map $f: X \to C$ such that the following diagram commutes: \begin{displaymath} \itexarray{ & & X & & \\ & ^\mathllap{f_1}\swarrow & \downarrow^\mathrlap{f} & \searrow^\mathrlap{f_2}\\ A & \underset{\pi_1}{\leftarrow} & C & \underset{\pi_2}{\rightarrow} & B } \end{displaymath} In this case, we tend to write $A \times B$ for $C$. \end{example} Note that if we are talking about sets, then an element of a set $X$ is equivalent to a map $1 \to X$ from the singleton set $1$. Thus in particular, the above definition says an element of $A \times B$ is the same as a pair of elements $(a, b)$, where $a \in A$ and $b \in B$. \begin{example} \label{}\hypertarget{}{} The [[free group|free]] [[group]] on $n$ generators is a group $F_n$ such that [[group homomorphisms]] $F_n \to G$ bijects (naturally) with $n$ elements of $G$ (not necessarily distinct). Similar to the above, the naturality condition says if $f: F_n \to G$ corresponds to $g_1, ..., g_n \in G$, and $h: G \to H$ is a map, then $h \circ f$ corresponds to the elements $h(g_1), ..., h(g_n)$. In particular, suppose the identity map $id: F_n \to F_n$ corresponds to $n$ elements $x_1, ..., x_n\in F_n$. Then any homomorphism $f: F_n \to G$ corresponds to the elements $f(x_1), ..., f(x_n)$ of $G$. Thus, given the specified elements $x_1, ..., x_n \in F_n$, the universal property says given any $n$ elements of $G$, we can find a unique homomorphism $f: F_n \to G$ that sends $x_1, ..., x_n$ to the $n$ elements. Diagrammatically, picking $n$ elements out of a set $X$ is the same as a [[function]] (of sets) $n \to X$. If we write $U(G)$ for the underlying set of the group $G$ (ie. $U$ is the [[forgetful functor]] to $Set$), the universal property of the free group says that there is a specified function $\phi: n \to U(F_n)$, such that for every function $f: n \to U(G)$, we can find a unique group homomorphism $\tilde{f}: F_n \to G$ such that the following diagram commutes: \begin{displaymath} \itexarray{ U(F_n) & \overset{U(\tilde{f})}{\to} & U(G)\\ ^\mathllap{\phi}\uparrow & \nearrow_{\mathrlap{f}}\\ n } \end{displaymath} In other words, every map $f: n \to U(G)$ factors through the universal map $\phi: n \to U(F_n)$ uniquely. \end{example} \begin{example} \label{}\hypertarget{}{} The [[tensor product]] of [[vector spaces]] has the universal property that a [[bilinear map]] $V \times W \to U$ bijects naturally with linear maps $V \otimes W \to U$. The naturality condition is given by the existence of a universal bilinear map $\phi: V \times W \to V \otimes W$ such that every bilinear map $V \times W \to U$ factors through $\phi$ uniquely. \end{example} We have more degenerate examples such as the terminal object: \begin{example} \label{}\hypertarget{}{} In the [[category of sets]], the singleton $1$ satisfies the property that there is always a unique map from any object to $1$. So we can say that the maps $A \to 1$ biject (necessarily naturally) with the set $1$. More generally, in any category, if an object $X$ is such that there is always a unique map from any object to $X$, then $X$ is called the [[terminal object]]. Dually, an initial object is an object $0$ such that there is a unique map from $0$ to any object $X$. \end{example} \hypertarget{classes_of_examples}{}\subsubsection*{{Classes of examples}}\label{classes_of_examples} In general, the \textbf{universal constructions} in [[category theory]] include \begin{itemize}% \item [[representable functor]] \item [[adjoint functor]] \item [[limit]]/[[colimit]] \item [[end]]/[[coend]] \item [[Kan extension]] \item [[dependent sum]]/[[dependent product]] \end{itemize} Each of these may be defined by requiring it to satisfy a \textbf{universal property}. A universal property is a property of some construction which boils down to (is manifestly equivalent to) the property that an associated object is a universal initial object of some (auxiliary) category. In good cases, every single one of these is a special case of every other, so somehow one single concept here comes to us with many different faces. Some or all of these have analogs in [[higher category theory]], notably in [[2-category]] theory and [[(∞,1)-category theory]]: \begin{itemize}% \item [[2-limit]] \item [[2-adjunction]] \item [[limit in a quasi-category]] \item [[adjoint (∞,1)-functor]] \end{itemize} [[!redirects universal construction]] [[!redirects universal constructions]] [[!redirects universal mapping]] [[!redirects universal mappings]] [[!redirects universal property]] [[!redirects universal properties]] [[!redirects universal mapping property]] [[!redirects universal mapping properties]] [[!redirects universal]] \end{document}