\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universe} \begin{quote}% This entry is about the notion in [[mathematics]]/[[logic]]/[[type theory]]. For the notion of the same name in [[physics]] see at \emph{[[observable universe]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{categories_as_universes}{Categories as universes}\dotfill \pageref*{categories_as_universes} \linebreak \noindent\hyperlink{universes_of_pure_sets}{Universes of pure sets}\dotfill \pageref*{universes_of_pure_sets} \linebreak \noindent\hyperlink{universes_inside_}{Universes inside $SET$}\dotfill \pageref*{universes_inside_} \linebreak \noindent\hyperlink{reflection}{Reflection}\dotfill \pageref*{reflection} \linebreak \noindent\hyperlink{universes_in_type_theory}{Universes in type theory}\dotfill \pageref*{universes_in_type_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_type_theory}{In type theory}\dotfill \pageref*{in_type_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A universe is a realm within which (some conceived part, naively and virtually all, of) [[mathematics]] may be thought of as taking place. Universes can be purely metamathematical, but we can also reflect upon them and bring them into mathematics. There are several different kinds of `universes'. For a physical notion of universe see [[observable universe]]. \hypertarget{categories_as_universes}{}\subsection*{{Categories as universes}}\label{categories_as_universes} Much of [[ordinary mathematics]] can be thought of as taking place [[internalization|inside]] ``the archetypical [[category]] [[Set|SET]] of sets''. Typically, the properties of $SET$ are formulated in [[first-order logic]] using a [[set theory]] such as [[ZFC]] or (more directly) [[ETCS]]. We can generalise this from $SET$ to any other [[category]] $C$. Without further assumptions on the category, there is in general very little mathematics that can be formulated inside it, but a few extra properties and structures are usually sufficient to provide something interesting. This is the general topic of \emph{[[internalisation]]}. The attitude to take is that any \emph{specific} category is merely one [[model]], while a general \emph{class} of categories is a [[theory]] (really a [[doctrine]], or [[2-theory]]). We can also use [[higher category theory|higher categories]] instead of mere categories here. Even for ordinary mathematics, this means starting with $\infty$-[[infinity-Grpd|GRPD]] instead of $SET$. \hypertarget{universes_of_pure_sets}{}\subsection*{{Universes of pure sets}}\label{universes_of_pure_sets} The idea of the [[large category]] $SET$ as the universe of mathematics has an analogue in pre-category-theoretic [[material set theory]]. The \textbf{von Neumann universe} $V$ is the [[proper class]] of all [[axiom of foundation|well-founded]] [[pure sets]]. More explicitly: for every [[ordinal number]] $\alpha$, we have a [[set]] $V_\alpha$ (the von Neumann universe of \textbf{rank} $\alpha$), defined [[recursion|recursively]] using the operations of [[power set]] and (material) [[union]] as \begin{displaymath} V_\alpha \coloneqq \bigcup_{\beta \lt \alpha} \mathcal{P}V_\beta . \end{displaymath} Then $V$ itself is the union of all of the $V_\alpha$. A similar but more complicated definition allows us to define the universe $L$ of [[constructible set]]s, called the [[constructible universe]]. See also a \href{https://secure.wikimedia.org/wikipedia/en/wiki/Universe_%28mathematics%29}{Wikipedia article} written largely by [[Toby Bartels]] in another lifetime. \hypertarget{universes_inside_}{}\subsection*{{Universes inside $SET$}}\label{universes_inside_} If set theory is the [[foundation of mathematics]], then the universes above are part of metamathematics rather than mathematics itself. However, we can also look for [[small categories]] or sets that exist within set theory and have the properties of a universe. There is already a hint of this in the hierarchy $V_\alpha$ out of which the von Neumann universe is built. For some values of $\alpha$, $V_\alpha$ might be a sufficiently large and complete collection of [[sets]] in which to do ordinary mathematics. From the [[nPOV]], we can instead look at the category $Set_\alpha$ of these sets and the [[functions]] between them, although it's more common to think about $Set_\kappa$ for some [[cardinal number]] $\kappa$. An [[infinite set]] is a simple example, as [[finite mathematics]] can be done inside it. Going beyond this, a [[Grothendieck universe]] is a set within which other infinite sets exist but which is complete under the operations of [[material set theory]] that are needed for ordinary mathematics. The [[structural set theory|structural]] analogue is a [[universe in the topos]] $SET$. In general, we need some axioms to state the existence of such universes; we can think of these as [[large cardinal]] axioms. (The existence of an infinite set is the [[axiom of infinity]]; the existence of a Grothendieck universe is the existence of an [[inaccessible cardinal]].) The use of such universes is convenient when we want to work with [[large categories]] ``as if they were small.'' That is, if we redefine ``small'' to mean ``element of some fixed universe,'' then the categories of all small structures of some sort will still be sets (rather than [[proper classes]]) in the bigger ambient universe, and thus we can for instance form [[functor categories]] between them freely. We do sometimes then need a way to ``move a category'' from one universe to another; see [[universe enlargement]]. \hypertarget{reflection}{}\subsection*{{Reflection}}\label{reflection} In [[logic]], we use [[reflection principle]]s (see \href{https://secure.wikimedia.org/wikipedia/en/wiki/Reflection_principle}{Wikipedia}) to systematically identify features of our meta-universe and see what is needed to prove the existence of an internal universe with these features. This follows the following outline: \begin{enumerate}% \item We assume that we understand \emph{a priori} what it means to use [[first-order logic]] (or some other finitary base logic). \item Using this base logic, we can formulate a foundational [[set theory]] that describes a meta-universe such as $SET$. \item Of course, $SET$ cannot be described from inside itself. But there may be objects in $SET$ ([[internal categories]]) that \emph{look like} $SET$ itself. \item We add an additional axiom to our set theory stating that such objects, the \emph{internal universes}, exist. These are then [[models]] of our original set theory. \item Now we are using a new, stronger set theory; repeat. \end{enumerate} \hypertarget{universes_in_type_theory}{}\subsection*{{Universes in type theory}}\label{universes_in_type_theory} Set theory is not the only [[foundation of mathematics]]. For example, there are also various foundational [[type theories]], closely related to [[structural set theory]]. Then we have a meta-universe of all types, and we can also add axioms for the existence of internal [[type universes]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[universe enlargement]] \item [[universe polymorphism]] \item [[type of types]] \begin{itemize}% \item [[subobject classifier]], [[object classifier]], [[partial map classifier]] \end{itemize} \item [[reflective subuniverse]] \item [[G-universe]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} (\ldots{}) \hypertarget{in_type_theory}{}\subsubsection*{{In type theory}}\label{in_type_theory} \begin{itemize}% \item [[Martin Hofmann]], section 2.1.6 of \emph{Syntax and semantics of dependent types} (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.8985}{web}) \end{itemize} [[!redirects universe]] [[!redirects universes]] [[!redirects universe {\tt \symbol{62}} history]] [[!redirects von Neumann universe]] [[!redirects von Neumann universes]] \end{document}