\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universe enlargement} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{notation}{Notation}\dotfill \pageref*{notation} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{models_of_a_theory}{Models of a theory}\dotfill \pageref*{models_of_a_theory} \linebreak \noindent\hyperlink{LocallyPresentableEnlargement}{Locally presentable enlargement}\dotfill \pageref*{LocallyPresentableEnlargement} \linebreak \noindent\hyperlink{accessible_enlargement}{Accessible enlargement}\dotfill \pageref*{accessible_enlargement} \linebreak \noindent\hyperlink{monoidal_enlargements}{Monoidal enlargements}\dotfill \pageref*{monoidal_enlargements} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $\mathbf{U}$ and $\mathbf{V}$ be set-theoretic [[universes]] (such as [[Grothendieck universes]] or [[universe in a topos|universes in an ambient topos]]) with $\mathbf{V}$ ``bigger than'' $\mathbf{U}$, and let $C$ be a [[category]] ``in the world of $\mathbf{U}$,'' i.e. whose objects are $\mathbf{U}$-[[small category|small]] and which itself is $\mathbf{U}$-[[large category|large]]. Its \textbf{universe enlargement} is supposed to be a category ``in the world of $\mathbf{V}$'' which is ``the same'' or at least similar to $C$, and perhaps better behaved. \hypertarget{notation}{}\subsection*{{Notation}}\label{notation} An enlargement of a specific category, such as [[Set]], [[Cat]], [[Grp]], or [[Top]], is often denoted by writing its name in all capitals: SET, CAT, GRP, TOP. As a notation for the operation on a general category $C$, the notation $\Uparrow C$ has been proposed. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Since the enlargement is not well-specified by the above intuitive description, there are several different definitions, which are often equivalent but not always. Henceforth we fix two universes $\mathbf{U}$ and $\mathbf{V}$ with $\mathbf{U}\in \mathbf{V}$. We will refer to sets in $\mathbf{U}$ as \emph{small}, sets in $\mathbf{V}$ as \emph{large}, and sets not necessarily in $\mathbf{V}$ (or in the next larger universe $\mathbf{W}$) as \emph{very large}. \hypertarget{models_of_a_theory}{}\subsubsection*{{Models of a theory}}\label{models_of_a_theory} If $C$ is the category of [[small set|small]] [[models]] of some [[theory]], then we can take $\Uparrow C$ to be the category of large [[models]] of the same theory. For instance: \begin{itemize}% \item the [[large category]] [[Set]] of [[small sets]] is the category of small models of the theory with one sort and no operations or relations. The category of large models of this theory is just the very large category $SET$ of [[large set|large sets]]. \item Similarly, from categories such as [[Grp]], [[Cat]], and [[Top]] of small [[groups]], [[categories]], and [[topological spaces]], we obtain the categories $GRP$, $CAT$, and $TOP$ of large groups, categories, and topological spaces. \end{itemize} Note that the theory could be [[algebraic theory|algebraic]], as for $Grp$, or [[essentially algebraic theory|essentially algebraic]], as for $Cat$, or even [[higher-order logic|higher-order]], as for $Top$. We will refer to this as the \textbf{logical enlargement}. In practice, this enlargement usually suffices, but for theoretical reasons it would be nice to have a construction which works on \emph{any} large category. \hypertarget{LocallyPresentableEnlargement}{}\subsubsection*{{Locally presentable enlargement}}\label{LocallyPresentableEnlargement} For any large category $C$, the very large [[presheaf category]] $[C^{op},SET]$ contains $C$ as a [[full subcategory]]. Furthermore, $[C^{op},SET]$ is $SET$-bicomplete, i.e. it has all large [[limits]] and [[colimits]], whether or not $C$ was $Set$-complete or cocomplete, and the [[Yoneda embedding]] $C \hookrightarrow [C^{op},SET]$ [[preserved limit|preserves]] all limits that exist in $C$. However, it hardly preserves any \emph{colimits} (since it is a [[free cocompletion]], after all). If we want an enlargement of $C$ which preserves some class $\Phi$ of colimits in $C$, then we can restrict to the full subcategory of $[C^{op},SET]$ consisting of the presheaves $C^{op}\to SET$ which preserved limit the colimits $\Phi$ (i.e. take them to limits in $SET$). Let's denote this category by $\Uparrow_\Phi C$. Since [[representable functors]] preserve all limits, the Yoneda embedding of $C$ factors through $\Uparrow_\Phi C$, and all the colimits in $\Phi$ are preserved by this restricted embedding. Moreover, $\Uparrow_\Phi C$ is closed under limits in $[C^{op},SET]$, so it is itself $SET$-complete. And as long as the (diagrams sizes of the) colimits in $\Phi$ are at most \emph{large}, then (by theorems of Day etc.) $\Uparrow_\Phi C$ is reflective in $[C^{op},SET]$, and hence also $SET$-cocomplete. Since usually, the only colimits we might care about in a large category $C$ are \emph{small}, a natural choice for $\Phi$ is the class of all small colimits existing in $C$. We will refer to this $\Uparrow_\Phi C$ as the \textbf{locally presentable enlargement}, since it is a [[locally presentable category]] relative to $\mathbf{V}$. (In fact, it is locally $\kappa$-presentable, where $\kappa$ is the [[cardinality]] of the first universe $\mathbf{U}$.) Moreover, we have the following (where $\lambda Cts(A,B)$ denotes the category of $\lambda$-small-limit preserving functors). \begin{utheorem} Suppose $C$ is locally presentable relative to $\mathbf{U}$, so that there is a small cardinal $\lambda$ and a small category $A$ with $\lambda$-small colimits such that $C\simeq \lambda Cts(A^{op},Set)$. If $\Phi$ denotes the class of all small colimits in $C$, then $\Uparrow_\Phi C \simeq \lambda Cts(A^{op},SET)$. \end{utheorem} Note that in this case, $\lambda Cts(A^{op},SET)$ is the category of large models of the theory (namely $A^{op}$) of which $C$ is the category of small ones. Thus, the theorem says that when $C$ is locally presentable, the locally presentable enlargement is the same as the logical one. \begin{proof} Write $C' \coloneqq \lambda Cts(A^{op},SET)$. Then we have a full embedding $C\hookrightarrow C'$, which preserves limits and colimits since they are calculated in the same way in both categories. Now every object of $C$ is a small colimit of objects of $A$, and the objects of $A$ are all $\lambda$-presentable in $C$ and in $C'$. Thus, every object of $C$ is $\kappa$-presentable in $C'$, where $\kappa$ is the size of the universe $\mathbf{U}$. Conversely, since $C'$ is locally $\lambda$-presentable (relative to $\mathbf{V}$), any $\kappa$-presentable object in it is a $\kappa$-small colimit of $\lambda$-presentable objects---so since $C$ is closed under small colimits in $C'$, it must consist exactly of the $\kappa$-presentable objects. However, since $C'$ is locally $\lambda$-presentable, it is also locally $\kappa$-presentable, so this implies that $C' \simeq \kappa Cts(C^{op},SET)$. But $\kappa Cts(C^{op},SET)$ is precisely $\Uparrow_\Phi C$. \end{proof} However, if $C$ is not locally presentable, then its logical and locally-presentable enlargements can disagree. In fact, they will \emph{usually} disagree in this case, since if $C$ is not locally presentable relative to $\mathbf{U}$, its logical enlargement will usually not be locally presentable relative to $\mathbf{V}$ either, whereas its locally-presentable enlargement is, by definition, locally presentable relative to $\mathbf{V}$. For example, the logical and locally presentable enlargements of $Top$ are quite different. \hypertarget{accessible_enlargement}{}\subsubsection*{{Accessible enlargement}}\label{accessible_enlargement} There is a simple modification of the locally-presentable enlargement which makes it agree with the logical enlargement for all [[accessible categories]], not just locally presentable ones. Namely, instead of $\kappa Cts(C^{op},SET)$, we consider $\kappa Flat(C^{op},SET)$, the category of $\kappa$-[[flat functors]] (functors that ``would preserve all $\kappa$-small limits if they existed''). We call this the \textbf{accessible enlargement}. Essentially the same proof as for the theorem above shows that if $C$ is accessible relative to $\mathbf{U}$, hence $C\simeq \lambda Flat(A^{op},Set)$, then the accessible enlargement is equivalent to $\lambda Flat(A^{op},SET)$, which is of course the logical enlargement. Note that if $C$ has all small limits, then its accessible and locally-presentable enlargements are the same, since a functor defined on a category with $\kappa$-small limits is $\kappa$-continuous iff it is $\kappa$-flat. However, if $C$ does not have small limits, then its locally-presentable enlargement \emph{does} have all large limits, whereas its accessible enlargement does not. Thus, when $C$ is ``poorly behaved,'' its accessible enlargement is ``closer to it'' (in particular, identical to its logical enlargement if $C$ is accessible) and thus equally poorly behaved, whereas its locally-presentable enlargement is further from it, but better behaved (complete and cocomplete). For some purposes one may want one of these behaviors; for other purposes one may want the other. \hypertarget{monoidal_enlargements}{}\subsubsection*{{Monoidal enlargements}}\label{monoidal_enlargements} One may further ask for an enlargement which inherits whatever additional structure $C$ has, such as [[monoidal category|monoidal structure]]. The logical enlargement will usually inherit such structure trivially, while the [[Day convolution]] theorem implies that when $C$ is monoidal, so is its locally-presentable enlargement---and moreover, the latter is [[closed monoidal category|closed]] even if $C$ is not! \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[inter-universal Teichmüller theory]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[universe polymorphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Sections 2.6 and 3.11--3.12 of \href{http://tac.mta.ca/tac/reprints/articles/10/tr10abs.html}{Basic Concepts of Enriched Category}. \item \href{http://golem.ph.utexas.edu/category/2010/11/universe_enlargement.html}{Blog post} \item [[Zhen Lin Low]], \href{http://mathoverflow.net/a/130639/381}{MO comment on universe enlargement} \end{itemize} [[!redirects universe enlargements]] [[!redirects change of universe]] [[!redirects changes of universe]] [[!redirects universe extension]] \end{document}