\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{universe in a topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{universes}{}\paragraph*{{Universes}}\label{universes} [[!include universe - contents]] \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{example_universes_in_}{Example: universes in $SET$}\dotfill \pageref*{example_universes_in_} \linebreak \noindent\hyperlink{axioms_of_universes}{Axioms of universes}\dotfill \pageref*{axioms_of_universes} \linebreak \noindent\hyperlink{consequences}{Consequences}\dotfill \pageref*{consequences} \linebreak \noindent\hyperlink{in_terms_of_indexed_categories}{In terms of indexed categories}\dotfill \pageref*{in_terms_of_indexed_categories} \linebreak \noindent\hyperlink{in_the_internal_logic}{In the internal logic}\dotfill \pageref*{in_the_internal_logic} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{universe} in a [[topos]] is a [[topos theory|topos-theoretic]] version of the notion of [[Grothendieck universe]]; see that page for general motivation and applications. To free the notion from membership-based set theory, we must replace \emph{sets of sets} by \emph{families of sets}, just as in passing from [[power set]]s to [[power object]]s we must replace sets of subsets by families of subsets. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{universe} in a topos $\mathcal{E}$ is a morphism $el\colon E \to U$ satisfying the axioms to follow. We think of $el\colon E \to U$ as an $U$-indexed family of objects/sets (fibers of $el$ being those objects), and we define a morphism $a\colon A \to I$ (regarded as an $I$-indexed family of objects) to be \textbf{$U$-small} if there exists a morphism $f\colon I \to U$ and a [[pullback]] square \begin{displaymath} \itexarray{A & \to & E\\ ^a\downarrow && \downarrow^{el}\\ I& \underset{f}{\to} & U.} \end{displaymath} The arrow $f$ is sometimes called the \textbf{name} of $a\colon A \to I$, since in the case when $I=*$, the arrow $f:* \to U$ \emph{points} at the term in the universe $U$ representing the object $A$. (See also this \href{http://nforum.ncatlab.org/discussion/6564/elementary-formulation-of-groupautomorphism-group/?Focus=53083#Comment_53083}{discussion} and references there.) Note that $f$ is not, in general, unique: a universe can contain many isomorphic sets. With this definition, the pullback of a $U$-small morphism is automatically again $U$-small. We say that an object $X$ is $U$-small if $X\to 1$ is $U$-small. The axioms which must be satisfied are: \begin{enumerate}% \item Every [[monomorphism]] is $U$-small. \item The composite of $U$-small morphisms is $U$-small. \item If $f\colon A \to I$ and $g\colon B \to A$ are $U$-small, then so is the [[dependent product]] $\Pi_f g$ (where $\Pi_f$ is the right adjoint to $f^*\colon \mathcal{E}/I \to \mathcal{E}/A$). \item The [[subobject classifier]] $\Omega$ is $U$-small. \end{enumerate} Note that since $0\to \Omega$ is a monomorphism, (1) and (4) imply that the [[initial object]] $0$ is $U$-small. A \emph{[[predicative mathematics|predicative]] universe} is a morphism $el\colon E \to U$ where instead of (4) we assume merely that $0$ is $U$-small; this makes sense in any [[locally cartesian closed category]]. In a topos, the generic subobject $1\to \Omega$ is a predicative universe, and of course a morphism is $\Omega$-small if and only if it is a monomorphism. If we assume only (1)--(3), then the identity morphism $1_0\colon 0 \to 0$ of the initial object would be a universe, for which it itself is the only $U$-small morphism. On the other hand, if $\mathcal{E}$ has a [[natural numbers object]] $N$, we may additionally assume that $N$ is $U$-small, to ensure that all universes contain ``infinite'' sets. Note that any object isomorphic to a $U$-small object is $U$-small; thus in the language of [[Grothendieck universe]]s this notion of smallness corresponds to \emph{essential} smallness. Roughly, we may say that (1) corresponds to transitivity of a Grothendieck universe, (3) and (4) correspond to closure under power sets, and (2) corresponds to closure under indexed unions. \hypertarget{example_universes_in_}{}\subsection*{{Example: universes in $SET$}}\label{example_universes_in_} We spell out in detail some implications of these axioms for the case that the [[topos]] in question is the Categeory of Sets according to [[ETCS]], to be denoted $SET$. Write $*$ for [[generalized the|the]] [[terminal object]] in $SET$, the singleton set. Notice that for each ordinary element $u \in U$, i.e. $* \stackrel{u}{\to} U$, there is the set $E_u$ over $u$, defined as the [[pullback]] \begin{displaymath} \itexarray{ E_u &\to& E \\ \downarrow && \downarrow \\ * &\stackrel{u}{\to}& U } \end{displaymath} We think of $E$ as being the disjoint union over $U$ of the $E_u$. In the language of indexed categories, this is precisely the case: the object $E\in SET$ is the indexed coproduct of the $U$-indexed family $(E\to U) \in SET/U$. \begin{itemize}% \item By the definition of $U$-smallness and the notation just introduced, an object $S$ in $SET$, regarded as a $*$-indexed family $S \to *$, is $U$-small precisely if it is isomorphic to one of the $E_u$. \item If $S$ is a $U$-small set by the above and if $S_0 \hookrightarrow S$ is a [[monomorphism]] so that $S_0$ is a subset of $S$, it follows from 1) and 2) that the comoposite $(S_0 \hookrightarrow S \to *) = (S_0 \to *)$ is $U$-small, hence that $S_0$ is $U$-small. So: a subset of a $U$-small set is $U$-small. \begin{itemize}% \item In particular, let $\emptyset$ be the [[initial object]], which is a subset $\emptyset \hookrightarrow \Omega$ of $\Omega = \mathbf{2}$. So: the empty set is $U$-small. \end{itemize} \item Let $S$, $T$ and $K$ be objects of $SET$, regarded as $*$-indexed families $f\colon S \to *$, $T \to *$ and $K \to *$. Notice that $(SET\downarrow S)(f^* K, f^* T) \simeq (SET\downarrow S)(\itexarray{K \times S \\ \downarrow^{p_2} \\ S}, \itexarray{T \times S \\ \downarrow^{p_2} \\ S})$ is canonically isomorphic to $SET(K \times S, T)$. Since $\Pi_f$ is defined to be the [[right adjoint]] to $f^*\colon SET \to SET \downarrow S$ it follows that $\Pi_f f^* T \simeq T^S$ is the function set of functions from $S$ to $T$. By 3), if $S$, $T$ are $U$-small then so is the function set $T^S$. \begin{itemize}% \item Since by 4) $\Omega = \mathbf{2}$ is $U$-small and for every $S$ the function set $\mathbf{2}^S \simeq P(S)$ is the power set of $S$, it follows that the power set of a $U$-small set is $U$-small. \end{itemize} \item Let $I$ be a $U$-small set, in that $I \to *$ is $U$-small, and let $S \to I$ be $U$-small, to be thought of as an $I$-indexed family of $U$-small sets $S_i$, where $S_i$ is the [[pullback]] $\itexarray{ S_i &\to& S \\ \downarrow && \downarrow \\ * &\stackrel{i}{\to}& I }$, so that $S$ is the disjoint union of the $S_i$: $S = sqcup_{i \in I} S_i$. By axiom 2) the composite morphism $(S \to I \to *) = (S \to *)$ is $U$-small, hence $S$ is a $U$-small set, hence the $I$-indexed union of $U$-small sets $\sqcup_{i \in I} S_i$ is $U$-small. \end{itemize} By standard constructions in [[set theory]] from these properties the following further closure properties of the universe $U$ follow. \begin{itemize}% \item For $I$ a $U$-small set and $S \to I$ an $I$-indexed family of $U$-small sets $S_i$, the cartesian product $\prod_{i \in I} S_i$ is $U$-small, as it is a subset of $P(I \times S)$. \end{itemize} In \textbf{summary} \begin{itemize}% \item the sets $\emptyset, *, \mathbf{2}$ are $U$-small; \item a subset of a $U$-small set is $U$-small; \item the power set $P(S)$ of any $U$-small set is $U$-small; \item the function set $T^S$ for any two $U$-small sets is $U$-small; \item the [[coproduct|union]] of a $U$-small family of $U$-small sets is $U$-small. \item the [[product|product]] of a $U$-small family of $U$-small sets is $U$-small. \end{itemize} \hypertarget{axioms_of_universes}{}\subsection*{{Axioms of universes}}\label{axioms_of_universes} Just as [[ZFC]] and other material [[set theory|set theories]] may be augmented with axioms guaranteeing the existence of [[Grothendieck universe]]s, so may [[ETCS]] and other structural set theories be augmented with axioms guaranteeing the existence of universes in the above sense. For example, the counterpart of Grothendieck's axiom \begin{itemize}% \item For every set $s$ there exists a universe $U$ containing $s$, i.e. $s\in U$ \end{itemize} would be \begin{itemize}% \item For every morphism $a\colon A \to I$ in $\mathcal{E}$, there exists a universe $el\colon E \to U$ such that $a$ is $U$-small. \end{itemize} \hypertarget{consequences}{}\subsection*{{Consequences}}\label{consequences} One can show, from the above axioms, that the $U$-small morphisms are closed under finite [[coproduct]]s and under [[quotient object]]s. See the reference below. \hypertarget{in_terms_of_indexed_categories}{}\subsection*{{In terms of indexed categories}}\label{in_terms_of_indexed_categories} Recall that an $\mathcal{E}$-[[indexed category]] is a [[pseudofunctor]] $\mathcal{E}^{op}\to \Cat$. The fundamental $\mathcal{E}$-indexed category is the \emph{self-indexing} $\mathbb{E}$ of $\mathcal{E}$, which takes $I\in \mathcal{E}$ to the [[over category|slice category]] $\mathbb{E}^I = \mathcal{E}/I$ and $x\colon I \to J$ to the [[base change]] functor $x^*$. An \textbf{internal full subcategory} of $\mathcal{E}$ is a full sub-indexed category $\mathbb{F}$ of $\mathbb{E}$ (that is, a collection of full subcategories $\mathbb{F}^I\subset \mathbb{E}^I$ closed under reindexing) such that there exists a generic $\mathbb{F}$-morphism, i.e. a morphism $el\colon E \to U$ in $\mathbb{F}^U$ such that for any $a\colon A \to I$ in $\mathbb{F}^I$, we have $a \cong f^*(el)$ for some $f\colon I \to U$. In this case (since $\mathcal{E}$ is [[locally cartesian closed category|locally cartesian closed]]) there exists an [[internal category]] $U_1 \;\rightrightarrows\; U$ in $\mathcal{E}$ such that $\mathbb{F}$ is equivalent, as an indexed category, to the indexed category represented by $U_1 \;\rightrightarrows\; U$. An internal full subcategory is an \textbf{internal full subtopos} if each $\mathbb{F}$ is a [[logical functor|logical]] subtopos of $\mathbb{E}$ (closed under finite limits, exponentials, and containing the subobject classifier). A universe in $\mathcal{E}$, as defined above, can then be identified with an internal full subtopos satisfying the additional axiom that $U$-small morphisms are closed under composition. \hypertarget{in_the_internal_logic}{}\subsection*{{In the internal logic}}\label{in_the_internal_logic} In a topos with a universe, we can talk about small objects in the [[internal logic]] by instead talking about elements of $U$. We can then rephrase the axioms of a universe in the internal logic to look more like the usual axioms for a Grothendieck universe, with the morphism $el\colon E \to U$ interpreted as a ``family of objects'' $(S_u)_{u\colon U}$: \begin{enumerate}% \item for all $u$ in $U$, if $X$ is a [[subset]] of $S_u$ (in the sense that there exists an [[injection]] $X \embedsin S_u$), then there is a $v$ in $U$ such that $X \cong S_v$; \item for all $u$ in $U$, there is a $v$ in $U$ such that the [[power set]] $P(S_u) \cong S_v$; \item there is a $v$ in $U$ such that $S_v$ is [[empty set|empty]]; \item for all $u$ in $U$ and all functions $f\colon S_u \to U$, there is a $v$ in $U$ such that the [[disjoint union]] $\biguplus_{i\colon S_u} S_{f(i)} \cong S_v$. \end{enumerate} In a [[well-pointed topos]], such as a model of [[ETCS]], these ``internal'' axioms are equivalent to their ``external'' versions that refer to [[global element]]s of $U$. [[Mike Shulman|Mike]]: I haven't actually checked anything in this section, but it seems probable. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[type universe]] \item [[object classifier in an (infinity,1)-topos]] \item [[Grothendieck universe]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The construction of universes in presheaf toposes was first discussed in the following short note which might serve as a concise introduction to the more general reference that follows: \begin{itemize}% \item [[Martin Hofmann]], [[Thomas Streicher]], \emph{Lifting Grothendieck Universes} , ms. University of Darmstadt (unpublished). (\href{http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf}{pdf}) \end{itemize} The general case is considered here: \begin{itemize}% \item [[Thomas Streicher]], \emph{Universes in Toposes} , pp.78-90 in L. Crosilla, P. Schuster (eds.), \emph{From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics} , Oxford UP 2005. (\href{http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/UniTop.ps.gz}{ps},\href{http://www.mathematik.tu-darmstadt.de/~streicher/NOTES/UniTop.pdf}{pdf}) \end{itemize} [[!redirects universe in a topos]] [[!redirects universes in a topos]] [[!redirects universes in toposes]] [[!redirects universe in the topos]] [[!redirects universes in the topos]] [[!redirects universes in the toposes]] [[!redirects internal full subcategory]] [[!redirects internal full subcategories]] [[!redirects internal full subtopos]] [[!redirects internal full subtoposes]] [[!redirects internal full subtopoi]] \end{document}