\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{vacuum energy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{vacua}{}\paragraph*{{Vacua}}\label{vacua} [[!include vacua -- contents]] \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InTermsOfSpecialValuesOfZetaFunctions}{In terms of special values of the zeta function}\dotfill \pageref*{InTermsOfSpecialValuesOfZetaFunctions} \linebreak \noindent\hyperlink{in_terms_of_the_path_integral_and_relation_to_generating_function}{In terms of the path integral and relation to generating function}\dotfill \pageref*{in_terms_of_the_path_integral_and_relation_to_generating_function} \linebreak \noindent\hyperlink{as_holomorphic_potential_for_determinant_line_bundle}{As holomorphic potential for Determinant line bundle}\dotfill \pageref*{as_holomorphic_potential_for_determinant_line_bundle} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{the_solution_to_the_strong_cp_problem_via_axions}{The solution to the strong CP problem via axions}\dotfill \pageref*{the_solution_to_the_strong_cp_problem_via_axions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[Feynman propagator]] $\frac{1}{H}$, then the corresponding \emph{vacuum energy} $Z$ is the [[logarithm]] of the [[functional determinant]] $det_{reg}$ of $H$ \begin{displaymath} Z \coloneqq -log\,det_{reg} H \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{InTermsOfSpecialValuesOfZetaFunctions}{}\subsubsection*{{In terms of special values of the zeta function}}\label{InTermsOfSpecialValuesOfZetaFunctions} The vacuum energy is equivalently the [[special values of L-functions|special value]] of the [[zeta function of an elliptic differential operator|zeta function]] $\zeta_H$ of $H$ given by the [[derivative]] at 0: \begin{displaymath} Z = -\frac{1}{2}\zeta_H^\prime(0) \,. \end{displaymath} See at \emph{\href{zeta+function+of+an+elliptic+differential+operator#FunctionalDeterminant}{zeta function of an elliptic differential operator -- Functional determinant}} for more. \hypertarget{in_terms_of_the_path_integral_and_relation_to_generating_function}{}\subsubsection*{{In terms of the path integral and relation to generating function}}\label{in_terms_of_the_path_integral_and_relation_to_generating_function} Traditionally the vacuum energy is expressed in terms of a hypothetical [[path integral]]. (As opposed to the \hyperlink{InTermsOfSpecialValuesOfZetaFunctions}{above} zeta-function formalization this is not rigorous, but it serves to give the idea of \emph{why} this is the vacuum energy and the the zeta-function expression may be taken to be the rigorous definition of the path integral heuristics.) By [[analogy]] with finite-dimensional [[Gaussian integrals]] (see at \emph{\href{Feynman+diagram#ForFinitelyManyDegreesOfFreedom}{Feynman diagram -- For finitely many degrees of freedom}}) one expects that the [[Wick rotation|Wick rotated]] [[vacuum amplitude]] version of the [[path integral]] (no [[field (physics)|field]] insertions, no [[boundary field theory|boundary conditions]]) is \begin{displaymath} \underset{\phi \in \mathbf{Fields}}{\int} \exp(- S_H(\phi)) D\phi = (det_reg H)^{-1/2} \,. \end{displaymath} Therefore \begin{displaymath} log \underset{\phi \in \mathbf{Fields}}{\int} \exp(- S_H(\phi)) D\phi = -\frac{1}{2}log\, det_{reg} H \end{displaymath} is the [[generating functional]] for [[n-point functions]]. (\ldots{}) e.g. (\hyperlink{Scrucca}{Scrucca, section 1.6}, \hyperlink{Edelstein13}{Edelstein 13, page 2}) \hypertarget{as_holomorphic_potential_for_determinant_line_bundle}{}\subsubsection*{{As holomorphic potential for Determinant line bundle}}\label{as_holomorphic_potential_for_determinant_line_bundle} Regard \begin{displaymath} h \coloneqq \frac{1}{2} det_{reg}H \end{displaymath} as a hermitian structure on a [[holomorphic line bundle]], hence, locally, as the [[absolute value]]-squared of the unit [[section]] $\phi_i$ of a [[holomorphic line bundle]] with respect to a local trivializing section (see at [[Chern connection]]). \begin{displaymath} h|_{U_i} = {\Vert \phi_i \Vert}^2 \,. \end{displaymath} Then this line bundle is the [[determinant line bundle]] of $H$. (\hyperlink{Quillen85}{Quillen 85}), review includes (\hyperlink{Freed87}{Freed 87, p. 18}, \hyperlink{Qiu12}{Qiu 12, section 2.8.1}). The [[Chern connection]] is \begin{displaymath} A = \partial log(h) = \partial \frac{1}{2} det_{reg}H = \partial Z \end{displaymath} and the [[curvature]] [[differential 2-form]] is \begin{displaymath} F = i \bar \partial\partial Z \,. \end{displaymath} \begin{quote}% eh? Something wrong with the factors of $1/2$ here\ldots{} \end{quote} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{the_solution_to_the_strong_cp_problem_via_axions}{}\subsubsection*{{The solution to the strong CP problem via axions}}\label{the_solution_to_the_strong_cp_problem_via_axions} In the solution to the [[strong CP problem]] via [[axions]] it is analysis of the dependency of the vacuum energy of [[Yang-Mills theory]] on the [[theta-angle]] $\theta$ which is argued to show that the [[axion]] expectation value $\theta = \langle a \rangle$ vanishes (\hyperlink{VafaWitten84}{Vafa-Witten 84}). See at \emph{\href{axion#AsASolutionToTheStrongCPProblem}{axion -- As a solution to the strong CP-problem}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{[[vacuum]]} \begin{itemize}% \item [[vacuum state]], [[Hadamard vacuum state]] \item [[interacting vacuum]] \item [[vacuum expectation value]], [[vacuum amplitude]], [[vacuum fluctuation]] \item [[vacuum energy]] \item [[vacuum diagram]] \item [[vacuum diagram]] \item [[thermal vacuum]], [[KMS state]] \item [[vacuum stability]] \item [[false vacuum]], [[tachyon]], [[Coleman-De Luccia instanton]] \item [[theta vacuum]] \item [[perturbative string theory vacuum]] \item [[landscape of string theory vacua]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance \begin{itemize}% \item Claudio Scrucca, section 1.6 in \emph{Advanced quantum field theory} \href{http://itp.epfl.ch/webdav/site/itp/users/181759/public/aqft.pdf}{pdf} \item [[José Edelstein]], page 2 of \emph{Lecture 8: 1-loop closed string vacuum amplitude}, 2013 (\href{http://www-fp.usc.es/~edels/Strings/Lect8Str.pdf}{pdf}) \item [[Daniel Quillen]], \emph{Determinants of Cauchy-Riemann Operators over a Riemann Surface}, Functional Anal. Appl. 19 (1985) 31. \item [[Daniel Freed]], \emph{On determinant line bundles}, Math. aspects of [[string theory]], ed. S. T. Yau, World Sci. Publ. 1987, (revised \href{http://www.math.utexas.edu/~dafr/Index/determinants.pdf}{pdf}, \href{http://arxiv.org/abs/dg-ga/9505002}{dg-ga/9505002}) \item Jia Qiu, section 2.8 of \emph{Lecture notes on topological field theory} \href{http://arxiv.org/abs/1201.5550}{arXiv:1201.5550} \end{itemize} The application to the [[axion]] solution to the [[strong CP problem]] is due to \begin{itemize}% \item [[Cumrun Vafa]], [[Edward Witten]], \emph{Parity Conservation in Quantum Chromodynamics} Phys. Rev. Lett. 53, 535 (1984) (\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.53.535}{publisher}) \end{itemize} \end{document}