\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{variational calculus} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InTermsOfSmoothSpaces}{In terms of smooth spaces}\dotfill \pageref*{InTermsOfSmoothSpaces} \linebreak \noindent\hyperlink{SmoothFunctionals}{Smooth functionals}\dotfill \pageref*{SmoothFunctionals} \linebreak \noindent\hyperlink{FunctionalDerivative}{Functional derivative}\dotfill \pageref*{FunctionalDerivative} \linebreak \noindent\hyperlink{in_terms_of_the_variational_bicomplex}{In terms of the variational bicomplex}\dotfill \pageref*{in_terms_of_the_variational_bicomplex} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{relation_to_covariant_phase_spaces}{Relation to covariant phase spaces}\dotfill \pageref*{relation_to_covariant_phase_spaces} \linebreak \noindent\hyperlink{by_functorial_analysis_and_geometry}{By functorial analysis and $\mathcal{D}$-geometry}\dotfill \pageref*{by_functorial_analysis_and_geometry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Variational calculus} -- sometimes called \textbf{secondary calculus} -- is a version of [[differential calculus]] that deals with local extremization of [[nonlinear functionals]]: extremization of differentiable functions on non-finite dimensional spaces such as [[mapping spaces]], [[spaces of sections]] and hence [[spaces of histories]] of [[field (physics)|fields]] in [[field theory]]. Specifically, it studies the \emph{[[critical points]]} , i.e. the points where the first variational derivative of a functional vanishes, for functionals on spaces of [[section]]s of [[jet bundle]]s. The kinds of equations specifying these critical points are [[Euler-Lagrange equation]]s. This applies to, and is largely motivated from, the study of [[action functional]]s in [[physics]]. In [[classical physics]] the critical points of a specified action functional on the space of field configurations encode the physically observable configurations. There are strong [[cohomology|cohomological]] tools for studying variational calculus, such as the [[variational bicomplex]] and [[BV-BRST formalism]]. \hypertarget{InTermsOfSmoothSpaces}{}\subsection*{{In terms of smooth spaces}}\label{InTermsOfSmoothSpaces} We discuss some basics of variational calculus of functional in terms of [[smooth spaces]] and in particular in terms of [[diffeological spaces]]. \hypertarget{SmoothFunctionals}{}\subsubsection*{{Smooth functionals}}\label{SmoothFunctionals} Let $X$ be a [[smooth manifold]]. Let $\Sigma$ be a [[smooth manifold|smooth]] [[manifold with boundary]] $\partial \Sigma \hookrightarrow \Sigma$. Write \begin{displaymath} [\Sigma, X] \in Smooth0Type \end{displaymath} for the [[smooth space]] (a [[diffeological space]]) which is the [[mapping space]] from $\Sigma$ to $X$, hence such that for each $U \in$ [[CartSp]] we have \begin{displaymath} [\Sigma, X](U) = C^\infty(U \times \Sigma, X) \,. \end{displaymath} \begin{defn} \label{MappingSpaceWithNonVaryingBoundary}\hypertarget{MappingSpaceWithNonVaryingBoundary}{} Write \begin{displaymath} [\Sigma, X]_{\partial \Sigma} \coloneqq [\Sigma, X] \times_{[\partial \Sigma,X]} \flat [\partial \Sigma,X] \end{displaymath} for the [[pullback]] in smooth spaces \begin{displaymath} \itexarray{ [\Sigma,X]_{\partial \Sigma} &\to& \flat [\partial \Sigma, X] \\ \downarrow && \downarrow \\ [\Sigma,X] &\stackrel{(-)|_{\partial \Sigma}}{\to}& [\partial \Sigma,X] } \,, \end{displaymath} where \begin{itemize}% \item the bottom morphism is the restriction $[\partial \Sigma \hookrightarrow \Sigma, X]$ of configurations to the boundary; \item the right vertical morphism is the [[counit of an adjunction|counit]] of the $(Disc \dashv \Gamma)$-[[adjunction]] on smooth spaces. \end{itemize} \end{defn} \begin{prop} \label{PlotsOfMappingSpaceWithNonVaryingBoundary}\hypertarget{PlotsOfMappingSpaceWithNonVaryingBoundary}{} The [[smooth space]] $[\Sigma, X]_{\partial \Sigma}$ is a [[diffeological space]] whose underlying set is $C^\infty(\Sigma,X)$ and whose $U$-plots for $U \in$ [[CartSp]] are smooth functions $\phi \colon U \times \Sigma \to X$ such that $\phi(-,s) \colon U \to X$ is the constant function for all $s \in \partial \Sigma \hookrightarrow \Sigma$. \end{prop} \begin{defn} \label{SmoothFunctional}\hypertarget{SmoothFunctional}{} A \textbf{functional} on the mapping space $[\Sigma, X]$ is a [[homomorphism]] of smooth spaces \begin{displaymath} S \colon [\Sigma, X]_{\partial \Sigma} \to \mathbb{R} \,. \end{displaymath} \end{defn} \hypertarget{FunctionalDerivative}{}\subsubsection*{{Functional derivative}}\label{FunctionalDerivative} Write \begin{displaymath} \mathbf{d} \colon \mathbb{R} \to \Omega^1 \end{displaymath} for the [[de Rham differential]] incarnated as a [[homomorphism]] of [[smooth spaces]] from the [[real line]] to the smooth [[moduli space]] of [[differential 1-forms]]. \begin{defn} \label{}\hypertarget{}{} The \textbf{[[functional derivative]]} \begin{displaymath} \mathbf{d}S \in \Omega^1([\Sigma,X]_{\partial \Sigma}) \end{displaymath} of a functional $S$, def. \ref{SmoothFunctional}, is simply its [[de Rham differential]] as a homomorphism of smooth spaces, hence the composite \begin{displaymath} \mathbf{d} S \colon [ \Sigma, X]_{\partial \Sigma} \stackrel{S}{\to} \mathbb{R} \stackrel{\mathbf{d}}{\to} \Omega^1 \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} This means that for each smooth parameter space $U \in$ [[CartSp]] and for each smooth $U$-parameterized collection \begin{displaymath} \phi \colon U \times \Sigma \to X \end{displaymath} of smooth functions $\Sigma \to X$, constant in the parameter $U$ in some neighbourhood of the boundary of $\Sigma$, \begin{displaymath} S_\phi \colon [\Sigma,X]_{\partial \Sigma}(U) \to C^\infty(U,\mathbb{R}) \end{displaymath} is the function that sends each such $U$-collection of configurations to the $U$-collection of their values under $S$. Then \begin{displaymath} (\mathbf{d}S)_\phi \in \Omega^1(U) \end{displaymath} is the smooth [[differential 1-form]] \begin{displaymath} (\mathbf{d}S)_\phi = \mathbf{d}(S(\phi)) \,. \end{displaymath} \end{defn} \begin{example} \label{}\hypertarget{}{} Let $\Sigma = [0,1] \hookrightarrow \mathbb{R}$ be the standard [[interval]]. Let \begin{displaymath} L(-,-) \mathbf{d}t \in \Omega^1([0,1], C^\infty(\mathbb{R}^2)) \end{displaymath} and consider the functional \begin{displaymath} S \colon ([0,1] \stackrel{\gamma}{\to} X) \mapsto \int_{0}^1 L(\gamma(t), \dot \gamma(t)) d t \,. \end{displaymath} Then for $U = \mathbb{R}$ and any smooth $U$-parameterized collection $\{\gamma_{u} \colon \Sigma \to X\}_{u \in I}$ the functional derivative takes the value \begin{displaymath} \begin{aligned} \mathbf{d}S_{\gamma_{(-)}} & = \left( \frac{d}{d u} \int_0^1 L(\gamma_u(t), \dot \gamma_u(t)) dt \right) \mathbf{d}u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{d \gamma_u(t)}{d u} + \frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{\partial \dot \gamma_u(t)}{\partial u} \right) \mathbf{d} u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{d \gamma_u(t)}{d u} + \frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \frac{\partial }{\partial t}\frac{\partial \gamma_u(t)}{\partial u} \right) \mathbf{d} u \\ & = \int_{0}^1 \left( \frac{\partial L}{\partial \gamma}(\gamma_u(t), \dot \gamma_u(t)) - \frac{\partial}{\partial t}\frac{\partial L}{\partial \dot \gamma}(\gamma_u(t), \dot \gamma_u(t)) \right) \frac{\partial \gamma_u(s)}{\partial u} \mathbf{d}u \end{aligned} \,. \end{displaymath} Here we used [[integration by parts]] and used that the boundary term vanishes \begin{displaymath} \begin{aligned} \int_{0}^1 \frac{\partial}{\partial t} \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(s), \dot \gamma_u(s)) \frac{\partial \gamma_u(s)}{\partial u} \right) d s & = \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(1), \dot \gamma_u(1)) \frac{\partial \gamma_u(1)}{\partial u} \right) - \left( \frac{\partial}{\partial \dot\gamma} L(\gamma_u(0), \dot \gamma_u(0)) \frac{\partial \gamma_u(0)}{\partial u} \right) \\ & = 0 \end{aligned} \end{displaymath} since by prop. \ref{PlotsOfMappingSpaceWithNonVaryingBoundary} $\gamma_{(-)}(1)$ and $\gamma_{(-)}(0)$ are constant. \end{example} \hypertarget{in_terms_of_the_variational_bicomplex}{}\subsection*{{In terms of the variational bicomplex}}\label{in_terms_of_the_variational_bicomplex} In the special case that the functional to be varied comes from a [[Lagrangian density]], then its variational derivative is the image under [[transgression of variational differential forms|transgression]] of the [[vertical derivative]] in the [[variational bicomplex]] of differential forms on the given [[jet bundle]]. (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Euler-Lagrange equations]], [[shell]] \item [[source form]], [[evolutionary vector field]], [[evolutionary derivative]] \item [[de Donder-Weyl formalism]] \item [[phase space]] \item [[variational bicomplex]], [[secondary differential calculus]] \item [[Lagrange multiplier]] \item [[variational sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Exposition of variational calculus in terms of [[jet bundles]] and [[Lepage forms]] and aimed at examples from [[physics]] is in \begin{itemize}% \item [[Jana Musilová]], [[Stanislav Hronek]], \emph{The calculus of variations on jet bundles as a universal approach for a variational formulation of fundamental physical theories}, Communications in Mathematics, Volume 24, Issue 2 (Dec 2016) (\href{https://doi.org/10.1515/cm-2016-0012}{doi.org/10.1515/cm-2016-0012}) \end{itemize} Fundamental texts on variational calculus include \begin{itemize}% \item [[Ian Anderson]], \emph{The variational bicomplex}, ([[AndersonVariationalBicomplex.pdf:file]]) \item Hubert Goldschmidt, [[Shlomo Sternberg]], \emph{The Hamilton-Cartan formalism in the calculus of variations}, Annales de l'institut Fourier 23 no. 1 (1973), p. 203-267 \href{http://www.numdam.org/item?id=AIF_1973__23_1_203_0}{numdam} \item [[Peter Olver]], \emph{Applications of Lie groups to differential equations}, Springer; \emph{Equivalence, invariants, and symmetry}, Cambridge Univ. Press 1995. \item [[Demeter Krupka]], \emph{Introduction to global variational geometry}, 2015 \item Olga Krupkov\'a{}, \emph{The geometry of ordinary variational equations}, Springer 1997, 251 p. \item Robert Hermann, \emph{Some differential-geometric aspects of the Lagrange variational problem}, Illinois J. Math. \textbf{6}, 1962, 634--673 \href{http://www.ams.org/mathscinet-getitem?mr=145457}{MR145457} \href{http://projecteuclid.org/euclid.ijm/1255632711}{euclid}; \emph{Differential geometry and the calculus of variations}, Acad. Press 1968 \item J. Jost, X. Li-Jost, \emph{Calculus of variations}, CUP 1998 \item [[Gregg Zuckerman|G. J. Zuckerman]], \emph{Action Principles and Global Geometry} , in Mathematical Aspects of String Theory, S. T. Yau (Ed.), World Scientific, Singapore, 1987, pp. 259\euro{}284. ([[ZuckermanVariation.pdf:file]]) \end{itemize} Zuckerman's ideas are used in \begin{itemize}% \item [[Marco Benini]], [[Alexander Schenkel]], \emph{Poisson algebras for non-linear field theories in the Cahiers topos}, \href{http://arxiv.org/abs/1602.00708}{arxiv/1602.00708} \end{itemize} Examples: [[Jürgen Jost]], \emph{Variational problems from physics and geometry}, \href{http://www.mis.mpg.de/fileadmin/jjost/variational_problems_from_physics_and_geometry.pdf}{pdf} \begin{itemize}% \item J. J. Duistermaat, \emph{On the Morse index in variational calculus}, Adv. Math. \textbf{21} (1976), 2, 173--195 \href{http://www.maths.ed.ac.uk/~aar/papers/duistermaat.pdf}{pdf}. \end{itemize} Some new results are in \begin{itemize}% \item [[E. Getzler]], \emph{A Darboux theorem for Hamiltonian operators in the formal calculus of variations}, Duke Math. J. \textbf{111}, n. 3 (2002), 535-560, \href{http://www.ams.org/mathscinet-getitem?mr=1885831}{MR2003e:32026}, \href{http://dx.doi.org/10.1215/S0012-7094-02-11136-3}{doi} \item Alberto De Sole, Victor G. Kac, \emph{The variational Poisson cohomology}, \href{http://arxiv.org/abs/1106.0082}{arxiv/1106.0082} \end{itemize} Geometric extremization problems (e.g. minimal surfaces), see also [[geometric measure theory]]: \begin{itemize}% \item [[Jürgen Jost]], \emph{The geometric calculus of variations: a short survey and a list of open problems}, Exposition. Math. \textbf{6} (1988), no. 2, 111--143, \href{http://www.ams.org/mathscinet-getitem?mr=938179}{MR89h:58036} \item H. Federer, \emph{Geometric measure theory}, Springer 1969(especially appendices to Russian transl.) \item Frederick J., Jr. Almgren, Almgren's big regularity paper (book form of a 1970s preprint) \end{itemize} Discussion in the context of BV formalism: \begin{itemize}% \item Arthemy V. Kiselev, \emph{The geometry of variations in Batalin-Vilkovisky formalism}, \href{http://arxiv.org/abs/1312.1262}{http://arxiv.org/abs/1312.1262} \end{itemize} Other references \begin{itemize}% \item J. C. P. Bus, \emph{The Lagrange multiplier rule on manifolds and optimal control of nonlinear systems}, SIAM J. Control and Optimization \textbf{22}, 5, 1984, 740-757 \href{http://oai.cwi.nl/oai/asset/2552/2552A.pdf}{pdf} \end{itemize} \hypertarget{relation_to_covariant_phase_spaces}{}\paragraph*{{Relation to covariant phase spaces}}\label{relation_to_covariant_phase_spaces} \begin{itemize}% \item L. Vitagliano, \emph{Secondary calculus and the covariant phase space}, \href{http://diffiety.ac.ru/preprint/2008/02-08.pdf}{pdf} \end{itemize} \hypertarget{by_functorial_analysis_and_geometry}{}\subsubsection*{{By functorial analysis and $\mathcal{D}$-geometry}}\label{by_functorial_analysis_and_geometry} See also references at [[diffiety]]. A formalism for variational calculus based on [[functorial analysis]] (with a precise relation with functional analytic methods and jet formalism) and a long list of examples of variational problems arising in [[classical mechanics]] and [[quantum field theory]] are collected in \begin{itemize}% \item [[Frédéric Paugam]], \emph{Towards the mathematics of quantum field theory} (\href{http://www.math.jussieu.fr/~fpaugam/documents/enseignement/master-mathematical-physics.pdf}{pdf}) \end{itemize} The formulation of variational calculus in terms of [[diffeological space]]s is mentioned for instance in section 1.65 of \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], \emph{Diffeology} (\href{http://math.huji.ac.il/~piz/documents/Diffeology.pdf#page=64}{pdf}) \end{itemize} \begin{itemize}% \item [[Frédéric Paugam]], \emph{Histories and observables in covariant field theory} (\href{http://arxiv.org/abs/1010.3210}{arXiv:1010.3210}), sec. 2.4 \end{itemize} following section 2.3.20 of \begin{itemize}% \item [[Alexander Beilinson]], [[Vladimir Drinfeld]], \emph{[[Chiral Algebras]]} \end{itemize} For variational calculus in [[nonstandard analysis]] see survey \begin{itemize}% \item V\'i{}tor Neves, \emph{Nonstandard calculus of variations, a survey}, \href{http://www2.mat.ua.pt/vneves/nsa/CalcVar-vitor6.pdf}{pdf} \end{itemize} category: analysis, physics [[!redirects calculus of variations]] [[!redirects variational derivative]] [[!redirects variational derivatives]] \end{document}