\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{vertex operator algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{standard_definition}{Standard definition}\dotfill \pageref*{standard_definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{CategoryOfVOAs}{Category of vertex operator algebras}\dotfill \pageref*{CategoryOfVOAs} \linebreak \noindent\hyperlink{ModularTensorCategories}{Modular category of modules over a VOA}\dotfill \pageref*{ModularTensorCategories} \linebreak \noindent\hyperlink{goddardthorn_theorem}{Goddard-Thorn theorem}\dotfill \pageref*{goddardthorn_theorem} \linebreak \noindent\hyperlink{RelationToAInfinityAlgebras}{Relation to $A_\infty$-algebras and RG fixed points}\dotfill \pageref*{RelationToAInfinityAlgebras} \linebreak \noindent\hyperlink{relation_to_conformal_nets}{Relation to conformal nets}\dotfill \pageref*{relation_to_conformal_nets} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{AsOperadAlgebras}{As algebras over the holomorphic sphere operad}\dotfill \pageref*{AsOperadAlgebras} \linebreak \noindent\hyperlink{as_factorization_algebras}{As factorization algebras}\dotfill \pageref*{as_factorization_algebras} \linebreak \noindent\hyperlink{relation_to_modular_tensor_categories}{Relation to modular tensor categories}\dotfill \pageref*{relation_to_modular_tensor_categories} \linebreak \noindent\hyperlink{as_chiral_algebras}{As chiral algebras}\dotfill \pageref*{as_chiral_algebras} \linebreak \noindent\hyperlink{relation_to_2d_conformal_field_theory}{Relation to 2d conformal field theory}\dotfill \pageref*{relation_to_2d_conformal_field_theory} \linebreak \noindent\hyperlink{category_of_vertex_operator_algebras_2}{Category of vertex operator algebras}\dotfill \pageref*{category_of_vertex_operator_algebras_2} \linebreak \noindent\hyperlink{relation_to_sporadic_groups}{Relation to sporadic groups}\dotfill \pageref*{relation_to_sporadic_groups} \linebreak \noindent\hyperlink{deformations}{Deformations}\dotfill \pageref*{deformations} \linebreak \noindent\hyperlink{further_references}{Further references}\dotfill \pageref*{further_references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Vertex operator algebras (or ``vertex algebras'', for short) are [[algebras]] with a product-operation parameterized by points in the [[complex plane]]. Vertex operator algebras equipped with an [[action]] of the [[Virasoro algebra]] encode the local ([[genus of a surface|genus-0]] behaviour) of [[2-dimensional conformal field theories]]. Here one may think of the [[complex plane]] as the [[Riemann sphere]] and of the $z$-parameterized product operation in the vertex algebras as being the [[n-point function|3-point function]] of the [[2d CFT]] with field insertions at the points 0, $z$ and $\infty$. In fact one vertex operator algebra encodes (only) one chiral/holomorphic half of such a genus-0 2d CFT; a full genus-0 2d CFT is given by the combination of two vertex operator algebras called a \emph{[[full field algebra]]}. The traditional definition of \emph{vertex operator algebra} (VOA) is long and tends to be somewhat unenlightening. But due to (\hyperlink{Huang}{Huang 91}) it is now known that vertex operator algebras have equivalently an [[FQFT]]-type characterization which manifestly captures this relation to [[n-point functions]] in the [[2d CFT]]: There is a [[monoidal category]] or [[operad]] whose [[morphism|morphisms]] are conformal spheres with $n$-punctures marked as incoming and one puncture marked as outgoing (each puncture equipped with a conformally parametrized annular neighborhood). Composition of such spheres is by gluing along punctures. This can be regarded as a category $2Cob_{conf}^0$ of 2-dimensional genus-0 conformal [[cobordism|cobordisms]]. As shown by theorems by [[Yi-Zhi Huang]] and [[Liang Kong]], a vertex operator algebra is precisely a \emph{[[holomorphic representation]]} of this category, or [[algebra over an operad]] for this [[operad]] i.e. an genus-0 [[conformal field theory|conformal]] [[FQFT]], hence a [[monoidal functor]] \begin{displaymath} V : 2Cob_{conf}^0 \to Vect \end{displaymath} such that its component $V_1$ is a holomorphic function on the moduli space of conformal punctured spheres. \hypertarget{standard_definition}{}\subsection*{{Standard definition}}\label{standard_definition} (under construction) A \textbf{vertex algebra} consists of the following data: \begin{itemize}% \item nonnegatively graded complex vector space $V = \oplus_{n =0}^\infty V_n$ \item vacuum vector $|0\rangle\in V_0$ \item a shift operator $T: V\to V$ \item operation $Y = Y(-,z) : V\to End V [ [z,z^{-1}] ]$ \end{itemize} This data satisfy three axioms: (vacuum) (translation axiom) (locality) In practice, the most important case is when the shift $T$ is related to a conformal vector ``the energy momentum tensor'' $\omega$ whose Fourier components are related to the generators $L_i$ of the [[Virasoro Lie algebra]] $Vir$. In that case we talk about a \textbf{conformal vertex algebra}. There is a notion of a module over a vertex algebra. A conformal vertex algebra $A$ is said to be \textbf{rational} if every $A$-module is completely reducible. Then it follows that there are only finitely many nonisomorphic simple $A$-modules. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{CategoryOfVOAs}{}\subsubsection*{{Category of vertex operator algebras}}\label{CategoryOfVOAs} Vertex operator algebras naturally form a [[category]] (see section 2.4 of (\hyperlink{FrenkenHuangLepowsky}{FrenkenHuangLepowsky}). This is naturally a [[monoidal category]] with respect to [[tensor product]] of VOAs (section 2.5). This is [[equivalence of categories|equivalent]] to \begin{itemize}% \item the category of algebras over the holomorphic punctured sphere operad (\hyperlink{HuangCFT}{Huang}); \item the category of vertex operator coalgebras (\hyperlink{Hubbard}{Hubbard}). \end{itemize} \hypertarget{ModularTensorCategories}{}\subsubsection*{{Modular category of modules over a VOA}}\label{ModularTensorCategories} The [[category]] of [[modules]]/[[representations]] over a given vertex operator algebra is a [[modular tensor category]], (\hyperlink{Huang}{Huang}) \hypertarget{goddardthorn_theorem}{}\subsubsection*{{Goddard-Thorn theorem}}\label{goddardthorn_theorem} \begin{itemize}% \item [[Goddard-Thorn theorem]] \end{itemize} \hypertarget{RelationToAInfinityAlgebras}{}\subsubsection*{{Relation to $A_\infty$-algebras and RG fixed points}}\label{RelationToAInfinityAlgebras} A [[functor]] from the category of [[BRST complex|BRST]]-VOAs to that of [[A-infinity algebra]]s is described in \begin{itemize}% \item [[Anton Zeitlin]], \emph{Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroids and Gauge Theory} (\href{http://arxiv.org/abs/0910.3652}{arXiv}) \end{itemize} and argued to algebraically encode the [[effective QFT|effective]] [[string theory]] background encoded by the [[CFT]] given by the VOA. \hypertarget{relation_to_conformal_nets}{}\subsubsection*{{Relation to conformal nets}}\label{relation_to_conformal_nets} Subject to some conditions, from a vertex operator algebra one may induce a [[conformal net]] and conversely (\hyperlink{CarpiKawahigahshiLongoWeiner15}{Carpi-Kawahigahshi-Longo-Weiner 15}, \hyperlink{Carpi16}{Carpi 16}) also (\hyperlink{Gui18}{Gui 18}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} A class of examples are \emph{[[current algebras]]} . A database of examples is given by (\hyperlink{GannonHoehn}{Gannon-H\"o{}hn}). The [[Moonshine]] module over the [[Griess algebra]] admits the structure of a vertex operator algebra, which has \begin{itemize}% \item rank 24; \item is a self-[[dual object]] in the category of VOAs; \item has trivial degree-1 subspaces. \end{itemize} A conjecture by Frenkel, Lepowsky and Meurman says that the Moonshine VOA is, up to isomorphism the unique VOA with these properties. See at \emph{[[monster vertex algebra]]}. \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} \begin{itemize}% \item [[Poisson vertex algebra]] \item [[rational vertex operator algebra]] \item [[super vertex operator algebra]] \item [[sheaf of vertex operator algebras]], [[vertex operator algebroid]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[operator product expansion]], [[conformal bootstrap]] \item [[affine Lie algebra]] \item [[conformal field theory]], \item [[factorization algebra]], \item [[automorphism of a vertex operator algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Victor Kac]], \emph{Vertex algebras for beginners}, Amer. Math. Soc. (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0924.17023&format=complete}{ZMATH entry}) \item [[Edward Frenkel]], [[David Ben-Zvi]]: \emph{Vertex algebras and algebraic curves}, Math. Surveys and Monographs \textbf{88}, AMS 2001, xii+348 pp. (Bull. AMS. \href{http://www.ams.org/journals/bull/2002-39-04/S0273-0979-02-00955-2/S0273-0979-02-00955-2.pdf}{review}, \href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1106.17035&format=complete}{ZMATH entry}) \item [[Igor Frenkel]], [[Yi-Zhi Huang]], [[James Lepowsky]], \emph{On Axiomatic approaches to Vertex Operator Algebras and Modules} , Memoirs of the AMS Vol 104, No 494 (1993) \end{itemize} \begin{itemize}% \item [[Igor Frenkel]], [[James Lepowsky]], Arne Meurman, \emph{Vertex operator algebras and the monster}, Pure and Applied Mathematics \textbf{134}, Academic Press, New York 1998. \end{itemize} \hypertarget{AsOperadAlgebras}{}\subsubsection*{{As algebras over the holomorphic sphere operad}}\label{AsOperadAlgebras} The original article with the interpretation of vertex operator algebras as holomorphic algebras over the holomorphic punctured sphere operad is \begin{itemize}% \item [[Yi-Zhi Huang]], \emph{Geometric interpretation of vertex operator algebras}, Proc. Natl. Acad. Sci. USA \textbf{88} (1991) pp. 9964-9968 \end{itemize} A standard textbook summarizing these results is \begin{itemize}% \item [[Yi-Zhi Huang]], \emph{Two-dimensional conformal geometry and vertex operator algebras}, Progr. in Math. Birkhauser 1997, \href{http://books.google.hr/books?isbn=0817638296}{gbooks} \end{itemize} As mentioned in the \href{http://books.google.com/books?id=SUUdknTpYjEC&pg=PR11&lpg=PR11&dq=%22vertex+operator+algebras%22+%22trimble%22&source=bl&ots=v3GHx_ra2M&sig=TW5MzAtDi4n_gJjvUHb6eELoAXQ&hl=en&ei=9jdnSoXqKJiCtge6xqDuDw&sa=X&oi=book_result&ct=result&resnum=4}{acknowledgements} there, [[Todd Trimble]] and [[Jim Stasheff]] had a hand in making the operadic picture manifest itself here. Other operadic approaches are known, e.g. an earlier one in \begin{itemize}% \item Bojko Bakalov, Alessandro D'Andrea, [[Victor Kac]], \emph{Theory of finite pseudoalgebras}, Adv. Math. \textbf{162} (2001), no. 1, 1--140, \href{http://www.ams.org/mathscinet-getitem?mr=2003c:17020}{MR2003c:17020} \end{itemize} and even earlier treatments via coloured [[operads]] and [[generalized multicategories]], for references (Snydal, Soibelman, Beilinson-Drinfeld) see [[relaxed multicategory]]. More recently Huang's student [[Liang Kong]] has been developing these results further, generalizing them to open-closed CFTs and to non-chiral, i.e. completely general CFTs. See \begin{itemize}% \item [[Liang Kong]], \emph{Open-closed field algebras} Commun. Math. Physics. 280, 207-261 (2008), \href{http://arxiv.org/abs/math/0610293}{math.QA/0610293}. \end{itemize} \hypertarget{as_factorization_algebras}{}\subsubsection*{{As factorization algebras}}\label{as_factorization_algebras} Discussion of vertex operator algebras as [[factorization algebras of observables]] is in section 6.3 and section 6.5 of \begin{itemize}% \item [[Owen Gwilliam]], \emph{Factorization algebras and free field theories} PhD thesis (\href{http://math.berkeley.edu/~gwilliam/thesis.pdf}{pdf}) \end{itemize} \hypertarget{relation_to_modular_tensor_categories}{}\subsubsection*{{Relation to modular tensor categories}}\label{relation_to_modular_tensor_categories} The [[representation categories]] of (rational) vertex operator algebras ([[modular tensor categories]]) are discussed in \begin{itemize}% \item [[Yi-Zhi Huang]], \emph{Vertex operator algebras, the Verlinde conjecture and modular tensor categories} (\href{http://arxiv.org/abs/math/0412261}{arXiv:math/0412261}) \end{itemize} \begin{itemize}% \item [[Terry Gannon]], [[Gerald Höhn]], Hiroshi Yamauchi, \emph{\href{http://www.math.ksu.edu/~gerald/voas/}{The online database of Vertex Operator Algebras and Modular Categories}} \end{itemize} \hypertarget{as_chiral_algebras}{}\subsubsection*{{As chiral algebras}}\label{as_chiral_algebras} An algebrogeometric version is due Beilinson and Drinfel'd and called the [[chiral algebra]]. \begin{itemize}% \item E. Frenkel, N. Reshetikhin, \emph{Towards deformed chiral algebras}, \href{http://arXiv.org/abs/q-alg/9706023}{q-alg/9706023} \item Ruthi Hortsch, [[Igor Kriz]], Ales Pultr, \emph{A universal approach to vertex algebras}, \href{http://arxiv.org/abs/1006.0027}{arxiv/1006.0027} \end{itemize} Much algebraic insight to algebaric structures in CFT is in unfinished notes \begin{itemize}% \item [[A. Beilinson]], [[B. Feigin]], B. Mazur, \emph{Notes on conformal field theory}, $<$http://www.math.sunysb.edu/{\tt \symbol{126}}kirillov/manuscripts.html{\tt \symbol{62}} \end{itemize} \hypertarget{relation_to_2d_conformal_field_theory}{}\subsubsection*{{Relation to 2d conformal field theory}}\label{relation_to_2d_conformal_field_theory} \begin{itemize}% \item [[Yi-Zhi Huang]], \emph{Two-dimensional conformal geometry and vertex operator algebras} Birkh\"a{}user (1997) \end{itemize} Relation specifically to [[conformal nets]] is discussed in \begin{itemize}% \item [[Sebastiano Carpi]], [[Yasuyuki Kawahigashi]], [[Roberto Longo]], Mih\'a{}ly Weiner, \emph{From vertex operator algebras to conformal nets and back}, Memoirs of the American Mathematical Society, Volume 254, Number 1213 2018; (\href{https://doi.org/10.1090/memo/1213}{doi:10.1090/memo/1213}, \href{http://arxiv.org/abs/1503.01260}{arXiv:1503.01260}) \item [[Sebastiano Carpi]], \emph{Operator algebras and vertex operator algebras}, Contribution to the Proceedings of the 14th Marcel Grossmann Meeting - MG14 (Rome, 2015) (\href{http://arxiv.org/abs/1603.06742}{arXiv:1603.06742}, \href{https://doi.org/10.1142/9789813226609_0508}{doi:10.1142/9789813226609\_0508}) \end{itemize} See also \begin{itemize}% \item James E. Tener, \emph{Representation theory in chiral conformal field theory: from fields to observables} (\href{https://arxiv.org/abs/1810.08168}{arXiv:1810.08168}) \end{itemize} Relation of the corresponding [[ribbon categoires]]: \begin{itemize}% \item Bin Gui, \emph{Categorical extensions of conformal nets} (\href{https://arxiv.org/abs/1812.04470}{arXiv:1812.04470}) \end{itemize} \hypertarget{category_of_vertex_operator_algebras_2}{}\subsubsection*{{Category of vertex operator algebras}}\label{category_of_vertex_operator_algebras_2} \begin{itemize}% \item [[Keith Hubbard]], \emph{The duality between vertex operator algebras and coalgebras, modules and comodules}, \href{http://www.faculty.sfasu.edu/hubbardke/duality.pdf}{pdf} \end{itemize} \hypertarget{relation_to_sporadic_groups}{}\subsubsection*{{Relation to sporadic groups}}\label{relation_to_sporadic_groups} \begin{itemize}% \item [[John Duncan]], \emph{Vertex operator algebras and sporadic groups}, \href{http://arxiv.org/PS_cache/arxiv/pdf/0811/0811.1306v1.pdf}{pdf}; \emph{Moonshine for Rudvalis's sporadic group I}, \href{http://arxiv.org/PS_cache/math/pdf/0609/0609449v2.pdf}{pdf} \end{itemize} \hypertarget{deformations}{}\subsubsection*{{Deformations}}\label{deformations} There is an interesting theory of deformation quantization of VOAs from \begin{itemize}% \item [[Pavel Etingof]], [[David Kazhdan]], \emph{Quantization of Lie bialgebras. V. Quantum vertex operator algebras}, Selecta Math. (N.S.) 6 (2000), no. 1, 105--130, \href{http://www.ams.org/mathscinet-getitem?mr=2002i:17022}{MR2002i:17022} \end{itemize} Deformation quantization of chiral algebras are studied by \begin{itemize}% \item [[Dmitry Tamarkin]], \emph{Deformations of chiral algebras}, Proceedings of the ICM, Beijing 2002, vol. 2, 105--118 \end{itemize} A class of ``free'' vertex algebras are also quantized using [[Batalin-Vilkovisky formalism]], with results important for understanding [[mirror symmetry]], in \begin{itemize}% \item Si Li, \emph{Vertex algebras and quantum master equation}, \href{https://arxiv.org/abs/1612.01292}{arxiv/1612.01292} \end{itemize} \hypertarget{further_references}{}\subsubsection*{{Further references}}\label{further_references} \begin{itemize}% \item \href{http://mathoverflow.net/questions/53988/what-is-the-motivation-for-a-vertex-algebra}{what-is-the-motivation-for-a-vertex-algebra} - a MathOverflow discussion on the motivation \item \href{http://www.math.ksu.edu/~gerald/voas}{The online database of Vertex Operator Algebras and Modular Categories} \item Yi-Zhi Huang, \emph{Meromorphic open-string vertex algebras}, J. Math. Phys. \textbf{54}, 051702 (2013) \href{http://dx.doi.org/10.1063/1.4806686}{doi} \end{itemize} [[!redirects vertex algebra]] [[!redirects vertex algebras]] [[!redirects Vertex operator algebra]] [[!redirects vertex operator algebras]] [[!redirects VOA]] [[!redirects VOAs]] \end{document}