\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{vielbein} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{InTermsOfCartanGeometry}{In terms of Cartan geometry}\dotfill \pageref*{InTermsOfCartanGeometry} \linebreak \noindent\hyperlink{InTermsOfOrthogonalStructure}{In terms of orthogonal structure}\dotfill \pageref*{InTermsOfOrthogonalStructure} \linebreak \noindent\hyperlink{ClassOfTheTangentBundle}{The class of the tangent bundle}\dotfill \pageref*{ClassOfTheTangentBundle} \linebreak \noindent\hyperlink{ReductionOfTheStructureGroup}{Reduction of the structure group}\dotfill \pageref*{ReductionOfTheStructureGroup} \linebreak \noindent\hyperlink{ModuliSpaceOfOrhtogonalStructures}{Moduli space of orthogonal structures: twisted cohomology}\dotfill \pageref*{ModuliSpaceOfOrhtogonalStructures} \linebreak \noindent\hyperlink{moduli_stack_of_orthogonal_structures}{Moduli stack of orthogonal structures}\dotfill \pageref*{moduli_stack_of_orthogonal_structures} \linebreak \noindent\hyperlink{differential_refinement_spin_connection}{Differential refinement: Spin connection}\dotfill \pageref*{differential_refinement_spin_connection} \linebreak \noindent\hyperlink{generalized_and_exceptional_vielbein_fields}{Generalized and exceptional vielbein fields}\dotfill \pageref*{generalized_and_exceptional_vielbein_fields} \linebreak \noindent\hyperlink{InTermsOfBasicFormsOnFrameBundle}{In terms of basic forms on the frame bundle}\dotfill \pageref*{InTermsOfBasicFormsOnFrameBundle} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{vielbein} or \emph{solder form} on a [[manifold]] $X$ is a linear identification of a [[tangent bundle]] with a [[vector bundle]] with explicit ([[pseudo-orthogonal structure|pseudo-]])[[orthogonal structure]]. Any such choice encodes a ([[pseudo-Riemannian metric|pseudo-]])[[Riemannian metric]] on $X$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are different equivalent perspectives on the notion of vielbein that are closely related: \begin{itemize}% \item \hyperlink{InTermsOfCartanGeometry}{In terms of Cartan geometry} \item \hyperlink{InTermsOfOrthogonalStructure}{In terms of orthogonal structure} \end{itemize} \hypertarget{InTermsOfCartanGeometry}{}\subsubsection*{{In terms of Cartan geometry}}\label{InTermsOfCartanGeometry} Let $X$ be a [[smooth manifold]] of [[dimension]] $d$. For definitness we assume here that $X$ is [[orientation|oriented]], but this is not necessary. A [[Lie algebra valued 1-form]] \begin{displaymath} (E,\Omega) : T X \to \mathfrak{iso}(d) \end{displaymath} with values in the [[Poincaré Lie algebra]] encodes a [[pseudo-Riemannian metric]] on $X$ (if non-degenerate, at least). In this context the component \begin{displaymath} E : T X \to \mathbb{R}^d \end{displaymath} of the [[connection on a bundle|connection]] 1-form is called the \emph{vielbein} . It encodes the metric by \begin{displaymath} g = \langle E \otimes E\rangle \in Sym^2_{C^\infty(X)} \Gamma(T^* X) \,, \end{displaymath} where $\langle -,-\rangle : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is the canonical [[bilinear form]]. In other words, Given an $(SO(d) \hookrightarrow ISO(d))$-[[Cartan connection]] on $X$, the \emph{vielbein} is the isomorphism in the definition of Cartan connection. For $d=4$ this is the \emph{vierbein} , for $d = 3$ the \emph{dreibein} , etc. This terminology is used notably in the context of the \emph{[[first-order formulation of gravity]]}. \hypertarget{InTermsOfOrthogonalStructure}{}\subsubsection*{{In terms of orthogonal structure}}\label{InTermsOfOrthogonalStructure} We discuss here how a choice of vielbein on a [[manifold]] is equivalently the [[reduction of structure groups|reduction of the structure group]] of the [[tangent bundle]] from the [[general linear group]] $GL(n)$ to its [[maximal compact subgroup]], the [[orthogonal group]]. The following also introduces the description of this in terms of [[smooth infinity-groupoid|smooth]] [[twited cohomology|twisted]] [[cohomology]]. While of course this is not necessary to understand vielbeins, it does give a very natural conceptual description with the advantage that it seamlessly generalizes to notions of \emph{[[generalized vielbein]]} fields and generally to [[twisted differential c-structures]]. \hypertarget{ClassOfTheTangentBundle}{}\paragraph*{{The class of the tangent bundle}}\label{ClassOfTheTangentBundle} For completeness, we first review how the [[tangent bundle]] of a [[smooth manifold]] is naturally incarnated as a [[cocycle]] in $GL(n)$-valued [[Cech cohomology]] and how this in turn is naturally formulated in terms of [[Lie groupoids]]/[[differentiable stack|smooth]] [[moduli stacks]]. The reader familiar with these basics should skip to the \hyperlink{ReductionOfTheStructureGroup}{next section}. Let $X$ be a [[smooth manifold]] of [[dimension]] $n$. By definition this means that there is an [[atlas]] $\{\phi_i^{-1} : \mathbb{R}^n \simeq U_i \hookrightarrow X\}$ of [[coordinate charts]]. On each overlap $U_i \cap U_j$ of two [[coordinate charts]] the [[partial derivatives]] of the corresponding [[coordinate transformations]] \begin{displaymath} \phi_j\circ \phi_i^{-1} : U_i \cap U_j \subset \mathbb{R}^n \to \mathbb{R}^n \end{displaymath} form the [[Jacobian matrix]] of [[smooth functions]] \begin{displaymath} ((\lambda_{i j})^{\mu}{}_{\mu}) \coloneqq \left[\frac{d}{d x^\nu} \phi_j \circ \phi_i^{-1} (x^\mu) \right] : U_i \cap U_j \to GL_n \end{displaymath} with values in invertible [[matrices]], hence in the [[general linear group]] $GL(n)$. By construction (by the [[chain rule]]), these functions satisfy on triple overlaps of coordinate charts the [[matrix product]] equations \begin{displaymath} (\lambda_{i j})^\mu{}_\lambda (\lambda_{j k})^\lambda{}_{\nu} = (\lambda_{i k})^\mu{}_{\nu} \,, \end{displaymath} hence the equation \begin{displaymath} \lambda_{i j} \cdot \lambda_{j k} = \lambda_{i k} \end{displaymath} in the [[group]] $C^\infty(U_i \cap U_j, GL(n))$ of smooth $GL(n)$-valued functions on the chart overlap. This is the [[cocycle]] condition for a smooth [[Cech cohomology|Cech cocycle]] in degree 1 with coefficients in $GL(n)$ (precisely: with coefficients in the [[sheaf]] of smooth functions with values in $GL(n)$ ): \begin{displaymath} [(\lambda_{i j})] \in H^1_{smooth}(X, GL_n) \,. \end{displaymath} It is useful to formulate this statement in the language of [[Lie groupoids]]/[[differentiable stacks]]. \begin{itemize}% \item $X$ itself is trivially a Lie groupoid $(X \stackrel{\to}{\to} X)$; \item from the atlas $\{U_i \to X\}$ we get the corresponding [[Cech groupoid]] \begin{displaymath} C(\{U_i\}) = (\coprod_{i, j} U_i \cap U_j \stackrel{\to}{\to} \coprod_i U_i) \end{displaymath} \item any [[Lie group]] $G$ induces its [[delooping]] [[Lie groupoid]] \begin{displaymath} \mathbf{B}G = \left( G \stackrel{\to}{\to} * \right) \,. \end{displaymath} \end{itemize} The above situation is neatly encoded in the existence of a [[diagram]] of Lie groupoids of the form \begin{displaymath} \itexarray{ C(\{U_i\}) &\stackrel{\lambda}{\to}& \mathbf{B} GL(n). \\ {}^{\mathllap{\simeq}}\downarrow \\ X } \,, \end{displaymath} where \begin{itemize}% \item the left morphism is [[stalk]]-wise (around small enough [[neighbourhoods]] of each point) an [[equivalence of groupoids]]; \item the horizontal functor has as components the functions $\lambda_{i j}$ and its functoriality is the cocycle condition $\lambda_{i j} \cdot \lambda_{j k} = \lambda_{i k}$. \end{itemize} We want to think of such a diagram as being directly a morphism of [[smooth infinity-groupoid|smooth groupoids]] \begin{displaymath} T X : X \to \mathbf{B} GL(n) \;\; \in \mathbf{H} \,. \end{displaymath} This is true in the [[(2,1)-category]] $\mathbf{H}$ in which stalkwise equivalences $W \subset Mor(PSh(SmthMfd, Grpd))$ have been [[simplicial localization|formally inverted]] to become [[homotopy equivalences]]. Since all real [[vector bundles]] on $X$ are encoded by such morphisms, as are their [[gauge transformations]], we say that $\mathbf{B} GL(n)$ is the [[moduli stack]] for real vector bundles. Of course there is a ``smaller'' Lie groupoid that also classifies real vector bundles. Passing to this ``smaller'' Lie groupoid is what the choice of vielbein accomplishes, to which we now turn. \hypertarget{ReductionOfTheStructureGroup}{}\paragraph*{{Reduction of the structure group}}\label{ReductionOfTheStructureGroup} Consider the defining inclusion of the [[orthogonal group]] into the [[general linear group]] \begin{displaymath} O(n) \hookrightarrow GL(n) \,. \end{displaymath} We may understand this inclusion geometrically in terms of the canonical [[metric]] on $\mathbb{R}^n$, but we may also understand it purely Lie theoretically as the the inclusion of the [[maximal compact subgroup]] of $GL(n)$. This makes manifest that the inclusion is trivial at the level of [[homotopy theory]] (it is a [[homotopy equivalence]]) and hence \emph{only} encodes geometric information. The inclusion induces a corresponding morphism of moduli stacks \begin{displaymath} \mathbf{c} : \mathbf{B} O(n) \to \mathbf{B} GL(n) \,. \end{displaymath} A choice of [[orthogonal structure]] on $T X$ a [[G-structure]] for $G = O(n)$, hence is a factorization of the above $GL(n)$-valued cocycle through $\mathbf{c}$, up to a smooth [[homotopy]]. \begin{displaymath} \itexarray{ X &&\stackrel{h}{\to}&& \mathbf{B} O(n) \\ & {}_{\mathllap{\lambda}}\searrow &\swArrow_{E^{-1}}& \swarrow_{\mathrlap{\mathbf{c}}} \\ && \mathbf{B}GL(n) } \,. \end{displaymath} This consists of two pieces of data \begin{itemize}% \item the morphism $h$ is a $O(n)$-valued 1-cocycle -- a collection of \emph{orthogonal transition functions} -- hence on each overlap of coordinate patches a smooth function \begin{displaymath} ((h_{i j}){}^a{}_b) : U_i \cap U_j \to O(n) \end{displaymath} such that \begin{displaymath} h_{i j} \cdot h_{j k} = h_{i k} \,; \end{displaymath} \item the homotopy $E$ is on each chart a function \end{itemize} \begin{displaymath} E_i = ((E_i)^a{}_\mu) : U_i \to GL(n) \end{displaymath} \begin{itemize}% \item such that on each double overlap it intertwines the transition functions $\lambda$ of the tangent bundle with the new orthogonal transition functions, meaning that the equation \begin{displaymath} (E_i)^a{}_{\mu} (\lambda_{i j})^{\mu}{}_\nu = (h_{i j})^a{}_b (E_j]^b{}_\nu \end{displaymath} holds. This exhibits the [[natural transformation|naturality]] [[diagram]] of $E$: \begin{displaymath} \itexarray{ * &\stackrel{E_i}{\to}& * \\ {}^{\mathllap{h_{i j}}}\downarrow && \downarrow^{\mathrlap{\lambda_{i j}}} \\ * &\stackrel{E_j}{\to}& * } \end{displaymath} \end{itemize} Such a lift $(h,E)$ is an [[orthogonal structure]] on $T X$. The component $E$ is called the corresponding \textbf{vielbein}. It exhibits an [[isomorphism]] \begin{displaymath} E : T X \stackrel{\simeq}{\to} V \end{displaymath} between a [[vector bundle]] $V \to X$ with [[structure group]] explicitly being the [[orthogonal group]] and the [[tangent bundle]], hence it exhibits the [[reduction of structure groups|reduction of the structure group]] of $T X$ from $GL(n)$ to $O(n)$. \hypertarget{ModuliSpaceOfOrhtogonalStructures}{}\paragraph*{{Moduli space of orthogonal structures: twisted cohomology}}\label{ModuliSpaceOfOrhtogonalStructures} In order to understand the space of choices of vielbein fields on a given tangent bundle, hence the \emph{[[moduli space]]} or \emph{[[moduli stack]]} of [[orthogonal structures]]/[[Riemannian metrics]] on $X$, it is useful to first consider the [[homotopy fiber]] of the morphism $\mathbf{c} : \mathbf{B}O(n) \to \mathbf{B}GL(n)$. One finds that this is the [[coset]] $O(n) \backslash GL(n)$. We may think of the [[fiber sequence]] \begin{displaymath} \itexarray{ GL(n)/O(n) &\to& \mathbf{B} O(n) \\ && \downarrow \\ && \mathbf{B} GL(n) } \end{displaymath} as being a bundle in $\mathbf{H}$ over the [[moduli stack]] $\mathbf{B}GL(n)$ with typical fiber $GL(n)/O(n)$. It is the smooth [[associated infinity-bundle|associated bundle]] to the smooth [[universal principal bundle|universal GL(n)-bundle]] induced by the canonical [[action]] of $GL(n)$ on $O(n)\backslash GL(n)$. This means that if the tangent bundle $T X$ is trivializable, then the coset space $O(n)\backslash GL(n)$ is the moduli space for vielbein fields on $T X$, in that the space of these is \begin{displaymath} \mathbf{H}(X, O(n)\backslash GL(n)) = C^\infty(X, O(n)\backslashGL(n)) \,. \end{displaymath} However, if $T X$ is not trivial, then this is true only locally: there is then an [[atlas]] $\{U_i \to X\}$ such that restricted to each $U_i$ the moduli space of vielbein fields is $C^\infty(U_i, GL(n)/ O(n))$, but globally these now glue together in a non-trivial way as encoded by the tangent bundle: we may say that the tangent bundle \emph{twists} the functions $X \to GL(n)/O(n)$. If -- as we may -- we think of an ordinary such function as a cocycle in degree-0 cohomology, then this means that a vielbein is a cocycle in $T X$-\_[[twisted cohomology]]\_ relative to the \emph{twisting coefficient bundle} $\mathbf{c}$. We can make this more manifest by writing equivalently \begin{displaymath} \itexarray{ O(n)\backslash GL(n) &\to& (O(n)\backslash GL(n)) // GL(n) \\ && \downarrow \\ && \mathbf{B}GL(n) } \,, \end{displaymath} where now on the right we have inserted the [[fibration]] resolution of the morphism $\mathbf{c}$ as provided by the [[factorization lemma]]: this is the morphism out of the [[action groupoid]] of the action of $GL(n)$ on $O(n)\backslash GL(n)$. The pullback \begin{displaymath} \itexarray{ T X \times_{GL(n)} (O(n)\backslash GL(n)) &\to& O(n)\backslash GL(n) // GL(n) \\ \downarrow && \downarrow \\ X &\stackrel{T X}{\to}& \mathbf{B}GL(n) } \end{displaymath} give the non-linear $T X$-associated bundle whose space of sections is the ``twisted $O(n)\backslash GL(n)$-0-cohomology'', hence the space of inequivalent vielbein fields. \hypertarget{moduli_stack_of_orthogonal_structures}{}\paragraph*{{Moduli stack of orthogonal structures}}\label{moduli_stack_of_orthogonal_structures} The above says that the space of vielbein fields is the [[cohomology]] of $T X$ in the [[over-(infinity,1)-topos|slice (2,1)-topos]] $\mathbf{H}_{/\mathbf{B}GL(n)}$ with coefficients in $\mathbf{c} : \mathbf{B}O \to \mathbf{B}GL(n)$ \begin{displaymath} O Struc_{TX}(X) \simeq \mathbf{H}_{/\mathbf{B}GL(n)}(T X, \mathbf{c}) \,. \end{displaymath} But also this space of choices of vielbein fields has a smooth structure, it is itself a smooth [[moduli stack]]. This is obtained by forming the [[internal hom]] in the slice over $\mathbf{B}GL(n)$ of the [[locally cartesian closed (infinity,1)-category|locally cartesian closed (2,1)-category]] $\mathbf{H}$. \begin{displaymath} O \mathbf{Struc}_{T X}(X) = [X, \mathbf{B}O]_{\mathbf{B}GL(n)} \end{displaymath} \hypertarget{differential_refinement_spin_connection}{}\paragraph*{{Differential refinement: Spin connection}}\label{differential_refinement_spin_connection} We may further lift this discussion to [[differential cohomology]] to get genuine \emph{differential} $T X$-twisted $\mathbf{c}$-structures. Write $\mathbf{B}G_{conn}$ for [[groupoid of Lie-algebra valued forms]]. As an object of $\mathbf{H} =$ [[smooth infinity-groupoid|SmoothGrpd]] this the [[moduli stack]] of $G$-[[connection on a bundle|connections]]. The morphism $\mathbf{c}$ has an evident differential refinement \begin{displaymath} \mathbf{c}_{conn} : \mathbf{B}O(n)_{conn} \to \mathbf{B}GL(n)_{conn} \,. \end{displaymath} The [[homotopy fiber]] of this differential refinement is still the same as before \begin{displaymath} \itexarray{ GL(n)/ O(n) &\to& \mathbf{B} O(n)_{conn} \\ && \downarrow \\ && \mathbf{B} GL(n)_{conn} } \,, \end{displaymath} so that the moduli space of ``differential vielbein fields'' is the same as that of plain vielbein fields. Consider an [[affine connection]] \begin{displaymath} \nabla_{T X} : X \to \mathbf{B}GL(n) \end{displaymath} hence a $GL(n)$-[[principal connection]] which locally on out atas is given by the [[Christoffel symbols]] \begin{displaymath} \Gamma_i = ((\Gamma_i)_\mu{}{}^{\alpha}{}_\beta) \in \Omega^1(U_i, \mathfrak{gl}(n)) \,. \end{displaymath} A lift $(\nabla_V, E)$ in \begin{displaymath} \itexarray{ X &&\stackrel{\nabla_{V}}{\to}&& \mathbf{B}O_{conn} \\ & {}_{\mathllap{\nabla_{T X}}}\searrow &\swArrow_{E^{-1}}& \swarrow_{\mathbf{c}_{conn}} \\ && \mathbf{B}GL(n)_{conn} } \end{displaymath} is in components a ``[[spin connection]]'' \begin{displaymath} \omega_\mu = E d E^{-1} + E \Gamma_\mu E^{-1} \end{displaymath} \begin{displaymath} \omega_\mu{}^a{}_b = E^a{}_\nu \partial_\mu E^\nu{}_b + E^a{}_\nu \Gamma_\mu{}^\nu{}_\lambda E^\lambda{}_b \,. \end{displaymath} This is the standard formula for the relation between the [[Christoffel symbols]] and the [[spin connection]] in terms of the vielbein. \hypertarget{generalized_and_exceptional_vielbein_fields}{}\paragraph*{{Generalized and exceptional vielbein fields}}\label{generalized_and_exceptional_vielbein_fields} The above discussion seamlessly generalizes to many other related cases. For instance \begin{enumerate}% \item For the coefficient bundle \begin{displaymath} \itexarray{ O(n)\backslash O(n,n) /O(n) &\to& \mathbf{B} (O(n) \times O(n)) \\ && \downarrow \\ && \mathbf{B}O(n,n) } \end{displaymath} one gets the [[generalized vielbein]] of [[type II geometry]]; \item for the coefficient bundle \begin{displaymath} \itexarray{ H_n\backslash E_n &\to& \mathbf{B} H_n \\ && \downarrow \\ && \mathbf{B} E_n } \end{displaymath} coming from the inclusion of the [[maximal compact subgroup]] of an [[exceptional Lie group]] one gets generalized vielbein fields for [[exceptional generalized geometry]]; \item for the coefficient bundle \begin{displaymath} \itexarray{ && \mathbf{B} E_8 \\ && \downarrow^{\mathbf{a}} \\ && \mathbf{B}^3 U(1) } \end{displaymath} coming from the second smooth universal [[Chern class]] of [[E8]] one gets part of the geometry of the [[supergravity C-field]] \end{enumerate} and so on. More examples are discussed for instance at \emph{[[twisted smooth cohomology in string theory]]}. \hypertarget{InTermsOfBasicFormsOnFrameBundle}{}\subsubsection*{{In terms of basic forms on the frame bundle}}\label{InTermsOfBasicFormsOnFrameBundle} A [[G-structure]] on $X$ for $G = O(n)$ the [[orthogonal group]] is equivalently an $O(n)$-[[principal bundle|principal]] subbundle of the [[frame bundle]] $\pi \colon Fr(X)\to X$. This frame bundle carries a universal ``basic'' $\mathbb{R}^n$-valued differential form \begin{displaymath} \tau_{b} \in \Omega^1(Fr(X), \mathbb{R}^n) \end{displaymath} defined on a [[tangent vector]] $v\in \Gamma_{f \in Fr(X)}$ by \begin{displaymath} \tau_b(v) \coloneqq f^{-1}(d \pi(v)) \,, \end{displaymath} where $d\pi \colon T Fr(X)\to T X$ is the [[differential]] of the bundle projection $\pi$ and $f$ is the given frame regarded as a linear [[isomorphism]] $f\colon \mathbb{R}^n \stackrel{\simeq}{\longrightarrow} T_x X$. Then given an orthogonal structure in the form of an $O(n)$-subbundle $i \colon Fr_O(X) \hookrightarrow Fr(X)$ and given finally a local section $\sigma$ of $Fr_O(X)$, then the vielbein field with respect to that local trivialization is the [[pullback of differential forms|pullback]] form \begin{displaymath} \tau = \sigma^\ast i^\ast \tau_b \,. \end{displaymath} (exposition of this in the wider context of [[integrability of G-structures]] includes \hyperlink{Lott90}{Lott 90, p. 4}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[reduction of structure groups]], [[orthogonal structure]] \item \href{integrability+of+G-structures#ExamplesOrthogonalStructure}{integrability of G-structures -- Examples -- Orthogonal structure} \item [[super-vielbein]] \item [[generalized vielbein]], [[exceptional generalized geometry]] \end{itemize} See also at [[field (physics)]] the section on \emph{\href{field%20%28physics%29#OrdinaryGravity}{Ordinary gravity}}. \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the general context of [[G-structures]] includes \begin{itemize}% \item [[John Lott]], \emph{The Geometry of Supergravity Torsion Constraints}, Comm. Math. Phys. 133 (1990), 563--615, (exposition in \href{http://arxiv.org/abs/math/0108125}{arXiv:0108125}) \end{itemize} [[!redirects vielbeine]] [[!redirects vielbeins]] [[!redirects vierbein]] [[!redirects vierbein field]] [[!redirects soldering form]] [[!redirects soldering forms]] [[!redirects vielbein field]] [[!redirects vielbein fields]] [[!redirects solder form]] [[!redirects solder forms]] [[!redirects soldering form]] [[!redirects soldering forms]] \end{document}