\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{volume conjecture} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{functorial_quantum_field_theory}{}\paragraph*{{Functorial quantum field theory}}\label{functorial_quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{for__on_knot_complements}{For $SU(2)$ on knot complements}\dotfill \pageref*{for__on_knot_complements} \linebreak \noindent\hyperlink{IdeaGenerally}{For $SU(2)$ on general 3-manifolds}\dotfill \pageref*{IdeaGenerally} \linebreak \noindent\hyperlink{for_}{For $SU(n)$}\dotfill \pageref*{for_} \linebreak \noindent\hyperlink{proof_strategies}{Proof strategies}\dotfill \pageref*{proof_strategies} \linebreak \noindent\hyperlink{AsAdSCFTPlus3d3dDuality}{As combined AdS/CFT + 3d/3d duality for wrapped M5-branes}\dotfill \pageref*{AsAdSCFTPlus3d3dDuality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{via_string_theory}{Via string theory}\dotfill \pageref*{via_string_theory} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{as_adscft__3d3d_duality_for_wrapped_m5branes}{As AdS/CFT + 3d/3d duality for wrapped M5-branes}\dotfill \pageref*{as_adscft__3d3d_duality_for_wrapped_m5branes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{volume conjectures} are a class of [[conjectures]] (slightly differing in generality and assumptions), saying that on a suitable (in particular: [[hyperbolic 3-manifold|hyperbolic]]) [[3-manifold]] $X$ a [[large N limit]] of [[SU(n)]]-[[Chern-Simons theory]] [[quantum observables]] ($N$-[[colored Jones polynomials]] or more generally [[RT-invariants]], [[TV-invariants]]) is [[equality|equal]] to the [[volume]] or [[complex volume]] of $X$. For a few special cases of 3-manifolds there are explicit [[proofs]] of the volume conjecture(s). Besides this there is an abundance of [[computer experiment|numerical evidence]] for the volume conjectures, using computer algebra such as [[SnapPy]] (see also \hyperlink{Zickert07}{Zickert 07}). In fact experimentation with these numerics is what has been driving the formulation of further variants of the volume conjecture. Hence [[experimental mathematics]] strongly suggests that the volume conjectures are true. But a conceptual explanation (let alone [[proof]]) in terms of [[quantum field theory]] has remained open (\hyperlink{Witten14}{Witten 14, bottom of p. 4}). But an explanation via [[duality in string theory]], combining [[AdS/CFT duality]] with the [[3d/3d correspondence]] for [[wrapped brane|wrapped]] [[M5-branes]], is argued for in \hyperlink{GangKimLee14}{Gang-Kim-Lee 14, 3.2}, \hyperlink{GangKim18}{Gang-Kim 18 (21)}, see \hyperlink{AsAdSCFTPlus3d3dDuality}{below}. \hypertarget{for__on_knot_complements}{}\subsubsection*{{For $SU(2)$ on knot complements}}\label{for__on_knot_complements} The original \emph{volume conjecture} (also ``Kashaev's conjecture'', due to \hyperlink{Kashaev95}{Kashaev 95}, and understood in terms of the $N$-[[colored Jones polynomial]] by \hyperlink{MurakamiMurakami01}{Murakami-Murakami 01}) states that the [[large N limit]] of the $N$-[[colored Jones polynomial]] (for [[gauge group]] [[SU(2)]]) of a [[knot]] $K$ gives the simplicial [[volume]] of its [[complement]] in the [[3-sphere]] (for [[hyperbolic knots]] this is the volume of the complementary [[hyperbolic 3-manifold]]) \begin{equation} lim_{N \to \infty} \left( \frac{ 2 \pi log } {N} \left\vert V_N(K; q = e^{\frac{2 \pi i}{N}}) \right\vert \right) \;=\; vol(K). \label{KashaevConjecture}\end{equation} Here $V_N(K; q)$ is the ratio of the values of the $N$-[[colored Jones polynomial]] of $K$ and of the [[unknot]] \begin{displaymath} V_N(K; q) = \frac{J_N(K; q)}{J_N(\bigcirc; q)}. \end{displaymath} The simplicial volume of a knot complement can be found via its unique \textbf{torus} decomposition into hyperbolic pieces and Seifert fibered pieces by a system of tori. The simplicial volume is then the sum of the hyperbolic volumes of the hyperbolic pieces of the decomposition. If one omits the [[absolute value]] in \eqref{KashaevConjecture} then the volume conjecture instead involves the [[complex volume]] (\hyperlink{MMOTY02}{MMOTY 02, Conjecture 1.2}). \hypertarget{IdeaGenerally}{}\subsubsection*{{For $SU(2)$ on general 3-manifolds}}\label{IdeaGenerally} More generally, volume conjectures state [[convergence of a sequence|convergence]] of the [[Turaev-Viro invariants]] or [[Reshetikhin-Turaev invariants]] on general [[hyperbolic 3-manifolds]] to the [[volume]] or [[complex volume]], respectively. See (\hyperlink{ChenYang15}{Chen-Yang 15}) \hypertarget{for_}{}\subsubsection*{{For $SU(n)$}}\label{for_} Generalization from [[gauge group]] [[SU(2)]] to [[SU(n)]]: \hyperlink{ChenLiuZhu15}{Chen-Liu-Zhu 15} \hypertarget{proof_strategies}{}\subsection*{{Proof strategies}}\label{proof_strategies} \hypertarget{AsAdSCFTPlus3d3dDuality}{}\subsubsection*{{As combined AdS/CFT + 3d/3d duality for wrapped M5-branes}}\label{AsAdSCFTPlus3d3dDuality} In \hyperlink{GangKimLee14b}{Gang-Kim-Lee 14b, 3.2}, \hyperlink{GangKim18}{Gang-Kim 18 (21)} it is argued that the [[volume conjecture]] for [[Chern-Simons theory]] on [[hyperbolic 3-manifolds]] $\Sigma^3$ is the combined statement of two [[dualities in string theory]] \begin{enumerate}% \item [[AdS/CFT duality]] \item [[3d-3d correspondence]] \end{enumerate} for the situation of [[M5-branes]] [[wrapped brane|wrapped on]] $\Sigma^3$ (\hyperlink{DGKV10}{DGKV 10}): \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[hyperbolic manifold]] \item [[analytically continued Chern-Simons theory]] \item [[Borel regulator]] \item [[membrane instanton]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles include \begin{itemize}% \item [[Rinat Kashaev]], \emph{A Link Invariant from Quantum Dilogarithm}, Modern Physics Letters AVol. 10, No. 19, pp. 1409-1418 (1995) (\href{https://arxiv.org/abs/q-alg/9504020}{arXiv:q-alg/9504020}) \item [[Rinat Kashaev]], \emph{The Hyperbolic Volume Of Knots From The Quantum Dilogarithm} Lett. Math. Phys. 39 (1997) 269-275 (\href{https://arxiv.org/abs/q-alg/9601025}{arXiv:q-alg/9601025}) \item [[Rinat Kashaev]], O. Tirkkonen, \emph{Proof of the volume conjecture for torus knots}, Journal of Mathematical Sciences (2003) 115: 2033 (\href{http://arxiv.org/abs/math/9912210}{arXiv:math/9912210}) \item [[Hitoshi Murakami]] and [[Jun Murakami]], \emph{The Colored Jones Polynomial And The Simplicial Volume Of A Knot}, Acta Math. 186 (2001) 85-104. \item [[Hitoshi Murakami]], [[Jun Murakami]], M. Okamoto, T. Takata, and Y. Yokota, \emph{Kashaev's Conjecture And The Chern-Simons Invariants Of Knots And Links}, Experiment. Math. 11 (2002) 427-435 (\href{https://arxiv.org/abs/math/0203119}{arXiv:math/0203119}) \item [[Hitoshi Murakami]], \emph{Asymptotic Behaviors Of The Colored Jones Polynomials Of A Torus Knot}, Internat. J. Math. 15 (2004) 547-555. \end{itemize} Generalization to [[Reshetikhin-Turaev construction]] on closed manifold, to the [[Turaev-Viro construction]] on [[manifolds with boundary]], and to more general [[roots of unity]] than considered before is in \begin{itemize}% \item [[Qingtao Chen]], [[Tian Yang]], \emph{A volume conjecture for a family of Turaev-Viro type invariants of 3-manifolds with boundary} (\href{http://arxiv.org/abs/1503.02547}{arXiv:1503.02547}) \item Dongmin Gang, Mauricio Romo, Masahito Yamazaki, \emph{All-Order Volume Conjecture for Closed 3-Manifolds from Complex Chern-Simons Theory}, Commun. Math. Phys. (2018) 359: 915. (\href{https://arxiv.org/abs/1704.00918}{arXiv:1704.00918}, \href{https://doi.org/10.1007/s00220-018-3115-y}{doi:10.1007/s00220-018-3115-y}) \end{itemize} Generalization to [[SU(n)]]: \begin{itemize}% \item [[Qingtao Chen]], [[Kefeng Liu]], Shengmao Zhu, \emph{Volume conjecture for SU(n)-invariants} (\href{https://arxiv.org/abs/1511.00658}{arXiv:1511.00658}) \end{itemize} Review includes \begin{itemize}% \item [[Hitoshi Murakami]], \emph{An Introduction to the Volume Conjecture} (\href{https://arxiv.org/abs/1002.0126}{arXiv:1002.0126}) In: \emph{Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory}, Contemporary Mathematics Volume 541, AMS 2011 (\href{http://dx.doi.org/10.1090/conm/541}{doi:10.1090/conm/541}) \item [[Edward Witten]], pp. 4 of \emph{Two Lectures On The Jones Polynomial And Khovanov Homology} (\href{http://arxiv.org/abs/1401.6996}{arXiv:1401.6996}) \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Volume_conjecture}{Volume conjecture}} \end{itemize} See also \begin{itemize}% \item [[Walter Neumann]], \emph{Extended Bloch group and the Cheeger-Chern-Simons class}, Geom. Topol. 8 (2004) 413-474 (\href{http://arxiv.org/abs/math/0307092}{arXiv:math/0307092}) \item [[Christian Zickert]], \emph{The volume and Chern-Simons invariant of a representation}, Duke Math. J., 150 (3):489-532, 2009 (\href{http://arxiv.org/abs/0710.2049}{arXiv:0710.2049}) \item [[Walter Neumann]], \emph{Realizing arithmetic invariants of hyperbolic 3-manifolds}, Contemporary Math 541 (Amer. Math. Soc. 2011), 233--246 (\href{http://arxiv.org/abs/1108.0062}{arXiv:1108.0062}) \item Stavros Garoufalidis, [[Dylan Thurston]], [[Christian Zickert]], \emph{The complex volume of $SL(n,\mathbb{C})$-representations of 3-manifolds} (\href{http://arxiv.org/abs/1111.2828}{arXiv:1111.2828}, \href{http://projecteuclid.org/euclid.dmj/1259332507}{Euclid}) \end{itemize} \hypertarget{via_string_theory}{}\subsubsection*{{Via string theory}}\label{via_string_theory} \hypertarget{general_2}{}\paragraph*{{General}}\label{general_2} Speculative discussion in terms of [[quantum field theory]] or [[string theory]] includes \begin{itemize}% \item [[Sergei Gukov]], \emph{Three-Dimensional Quantum Gravity, Chern-Simons Theory, And The A-Polynomial}, Commun. Math. Phys. 255 (2005) 577-627 (\href{https://arxiv.org/abs/hep-th/0306165}{arXiv:hep-th/0306165}) \item [[Robbert Dijkgraaf]], Hiroyuki Fuji, \emph{The Volume Conjecture and Topological Strings} (\href{http://arxiv.org/abs/0903.2084}{arXiv:0903.2084}) \item [[Tudor Dimofte]], [[Sergei Gukov]], \emph{Quantum Field Theory and the Volume Conjecture}, Contemporary Mathematics 541 (2011), p.41-67 (\href{http://arxiv.org/abs/1003.4808}{arxiv:1003.4808}) \end{itemize} A conceptual explanation of the volume conjecture via [[analytically continued Chern-Simons theory]] was proposed in \begin{itemize}% \item [[Edward Witten]], \emph{Analytic Continuation Of Chern-Simons Theory}, AMS/IP Stud. Adv. Math 50 (2011): 347 (\href{https://arxiv.org/abs/1001.2933}{arXiv:1001.2933}) \end{itemize} (but it seems that as a sketch or strategy for a rigorous proof, it didn't catch on). \hypertarget{as_adscft__3d3d_duality_for_wrapped_m5branes}{}\paragraph*{{As AdS/CFT + 3d/3d duality for wrapped M5-branes}}\label{as_adscft__3d3d_duality_for_wrapped_m5branes} Suggestion that the statement of the [[volume conjecture]] is really [[AdS-CFT duality]] combined with the [[3d-3d correspondence]] for [[M5-branes]] [[wrapped brane|wrapped]] on [[hyperbolic 3-manifolds]]: \begin{itemize}% \item Dongmin Gang, [[Nakwoo Kim]], Sangmin Lee, Section 3.2\_Holography of 3d-3d correspondence at Large $N$\emph{, JHEP04(2015) 091 (\href{https://arxiv.org/abs/1409.6206}{arXiv:1409.6206})} \item Dongmin Gang, [[Nakwoo Kim]], around (21) of: \emph{Large $N$ twisted partition functions in 3d-3d correspondence and Holography}, Phys. Rev. D 99, 021901 (2019) (\href{https://arxiv.org/abs/1808.02797}{arXiv:1808.02797}) \end{itemize} [[!redirects volume conjectures]] \end{document}