\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{wall crossing} \begin{quote}% This entry is about discontinuities in parameter dependence of (often asymptotic) solutions of [[differential equations]] and similar phenomena (notably in the context of [[BPS states]] formalized via [[Bridgeland stability conditions]]) with stability parameters (and their stability slopes) in [[algebraic geometry]] which are often interpreted as crossing the walls of marginal stability in [[physics]]. For the different notions of the same name in [[Morse theory]] see at \emph{[[Cerf wall crossing]]} and for the (Weyl chamber wall) crossing functors in representation theory see [[wall crossing functor]]. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{in_supersymmetric_field_theory}{In supersymmetric field theory}\dotfill \pageref*{in_supersymmetric_field_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{introductions_and_lectures}{Introductions and lectures}\dotfill \pageref*{introductions_and_lectures} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_supergravity}{In supergravity}\dotfill \pageref*{in_supergravity} \linebreak \noindent\hyperlink{conferences_and_seminars}{Conferences and seminars}\dotfill \pageref*{conferences_and_seminars} \linebreak \noindent\hyperlink{categorification}{Categorification}\dotfill \pageref*{categorification} \linebreak \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} In the study of [[solitons]], one may try a [[WKB approximation|WKB-style approximation]] to a nonlinear [[wave equation]] (see also \emph{[[eikonal equation]]}, \emph{[[Maslov index]]}, etc.). Stokes has observed that when trying to connect the local solutions, one has discontinuities along certain lines, now called \textbf{Stokes lines}. This is called the [[Stokes phenomenon]]. Similar issues appear in study of [[isomonodromic deformation]]s of nonlinear [[ODEs]] in the [[complex plane]], which is also relevant in [[soliton]] theory, and [[integrable systems]], and special functions like [[Painlevé transcendent]]s. This has especially been studied by the Kyoto school (Jimbo, Miwa, Sato, [[Masaki Kashiwara|Kashiwara]] etc.), including the use of [[D-modules]] and [[microlocal analysis]]. The Kyoto school found a connection of isomonodromic theory to what is called [[holonomic quantum field]]s. The solutions of meromorphic differential equations can be expressed in terms of [[meromorphic connection]]s. Then the slopes related to the solutions can be viewed as features of particular objects in a category of $D$-[[D-module|modules]]. More generally, slope filtrations are structures which appear in many other additive categories, e.g. in [[Hodge theory]], theory of Dieudonn\'e{} modules and so on. Many of those are related to the stability of the objects, which is important in the construction of [[moduli spaces]]. In [[algebraic geometry]], [[Grothendieck]] has shown how to correctly define and construct some fundamental [[moduli spaces]], like Hilbert schemes and Quot schemes for [[coherent sheaves]]. The work has been continued by [[David Mumford]] who geometrized classical invariant theory into [[geometric invariant theory]]. To keep moduli under control, one needs to impose stability conditions on objects and also look at classes with some fixed data: those involve slopes or equivalently phase factors. This is thus similar to the phases of eikonal in the case of Stokes phenomenon. Cf. also Harder-Narasimhan filtration, [[Castelnuovo-Mumford regularity]] (cf. \href{http://en.wikipedia.org/wiki/Castelnuovo%E2%80%93Mumford_regularity}{wikipedia}) etc. \hypertarget{in_supersymmetric_field_theory}{}\subsubsection*{{In supersymmetric field theory}}\label{in_supersymmetric_field_theory} In [[super Yang-Mills theory]] the number of [[BPS states]] is locally constant as a function of the parameters of the theory, but it may jump at certain ``walls'' in the [[moduli spaces]] of parameters. The precise behaviour of the BPS states as one crosses these walls is studied as ``wall crossing phenomena''. Another example are the [[moduli spaces]] of [[Higgs bundles]], studied by [[Carlos Simpson]] and others, which have special cases with interpretations both in geometry and in the gauge theory (instantons). It appears that sometimes they can be linked to the geometric picture. [[Riemann-Hilbert correspondence]], spectral transform and similar correspondences again play a major role. Surely, one often works at the derived level. An adaptation of the notion of stability into the setup of [[triangulated categories]] has been introduced by Bridgeland. Bridgeland stability for the derived categories of (boundary conditions of) D-branes (B-model) are relevant for string theory. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[BPS state]], [[D-module]], [[cluster algebra]], [[quiver]], [[representation theory]], [[Donaldson-Thomas invariant]]. \end{itemize} [[!include field theory with boundaries and defects - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{introductions_and_lectures}{}\subsubsection*{{Introductions and lectures}}\label{introductions_and_lectures} \begin{itemize}% \item Sergio Cecotti, \emph{Trieste lectures on wall-crossing invariants} (2010) (\href{http://people.sissa.it/~cecotti/ictptext.pdf}{pdf}) \item [[Greg Moore]], \emph{PiTP Lectures on BPS states and wall-crossing in $d = 4$, $\mathcal{N} = 2$ theories} (\href{http://www.physics.rutgers.edu/~gmoore/PiTP_July26_2010.pdf}{pdf}) \item [[Tudor Dimofte]], \emph{Refined wall crossing} (\href{http://thesis.library.caltech.edu/5808/4/TD_part1.pdf}{pdf}), part I of \emph{Refined BPS invariants, Chern-Simons theory, and the quantum dilogarithm}, 2010 (\href{http://thesis.library.caltech.edu/5808/1/DimofteTDofficial.pdf}{pdf}, \href{http://thesis.library.caltech.edu/5808/}{web}) \end{itemize} \hypertarget{original_articles}{}\subsubsection*{{Original articles}}\label{original_articles} \hypertarget{general}{}\paragraph*{{General}}\label{general} \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Stability structures, motivic Donaldson-Thomas invariants and cluster transformations}, \href{http://arxiv.org/abs/0811.2435}{arXiv:0811.2435}; \emph{Motivic Donaldson-Thomas invariants: summary of results}, \href{http://arxiv.org/abs/0910.4315}{0910.4315}; \emph{Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry}, \href{http://arxiv.org/abs/1303.3253}{arxiv/1303.3253} \item Arend Bayer, [[Yuri Manin|Yuri I. Manin]], \emph{Stability conditions, wall-crossing and weighted Gromov-Witten invariants}, \href{http://arxiv.org/abs/math.AG/0607580}{math.AG/0607580}, Mosc. Math. J. \textbf{9} (1), 2009. \item [[Mina Aganagic]], Hirosi Ooguri, [[Cumrun Vafa]], Masahito Yamazaki, \emph{Wall crossing and M-theory}, \href{http://arxiv.org/abs/0908.1194}{arxiv/0908.1194} \item [[Mina Aganagic]], \emph{Wall crossing, quivers and crystals}, \href{http://arxiv.org/abs/1006.2113}{arxiv/1006.2113} \item S. Cecotti, [[Cumrun Vafa]], \emph{BPS wall crossing and topological strings}, \href{http://arxiv.org/abs/0910.2615}{arXiv/0910.2615} \item [[Davide Gaiotto]], [[Greg Moore]], [[Andrew Neitzke]], \emph{Wall-crossing, Hitchin systems, and the WKB approximation, (\href{http://arxiv.org/abs/0907.3987}{arxiv/0907.3987})} \item E. Diaconescu, [[Greg Moore]], \emph{Crossing the wall: branes vs. bundles}, \href{http://arxiv.org/abs/0706.3193}{arXiv/0706.3193} \item E. Andriyash, [[Frederik Denef]], [[Daniel Jafferis]], [[Greg Moore|G. W. Moore]], \emph{Wall-crossing from supersymmetric galaxies}, \href{http://arxiv.org/abs/1008.0030}{arxiv/1008.0030} \item Tom Bridgeland, [[Valerio Toledano-Laredo]], \emph{Stability conditions and Stokes factors}, \href{http://arxiv.org/abs/0801.3974}{arxiv/0801.3974} \item M. C. N. Cheng, E. P. Verlinde, \emph{Wall crossing, discrete attractor flow and Borcherds algebra}, SIGMA 4 (2008), 068, 33 pages, \href{http://www.emis.de/journals/SIGMA/2008/068/sigma08-068.pdf}{pdf} \item Masahito Yamazaki, \emph{Crystal melting and wall crossing phenomena}, Ph.D. thesis, \href{http://arxiv.org/abs/1002.1709}{arxiv/1002.1709} \item Michele Cirafici, Annamaria Sinkovics, [[Richard Szabo]], \emph{Instanton counting and wall-crossing for orbifold quivers}, \href{http://arxiv.org/abs/1108.3922}{arxiv/1108.3922} \item H.-Y. Chen, N. Dorey, K. Petunin, \emph{Moduli space and wall-crossing formulae in higher-rank gauge theories}, JHEP 11 (2011) 020, ; \emph{Wall crossing and instantons in compactified gauge theory}, JHEP 06 (2010) 024 \href{ttp://arxiv.org/abs/1004.0703}{arXiv:1004.0703} \end{itemize} \hypertarget{in_supergravity}{}\subsubsection*{{In supergravity}}\label{in_supergravity} \begin{itemize}% \item [[Frederik Denef]], \emph{Supergravity flows and D-brane stability}, JHEP 0008:050,2000 (\href{http://arxiv.org/abs/hep-th/0005049}{arXiv:hep-th/0005049}) \item [[Frederik Denef]], \emph{Quantum Quivers and Hall/Hole Halos}, JHEP 0210:023,2002 (\href{http://arxiv.org/abs/hep-th/0206072}{arXiv:hep-th/0206072}) \item [[Daniel Jafferis]], [[Gregory Moore]], \emph{Wall crossing in local Calabi Yau manifolds} (\href{http://arxiv.org/abs/0810.4909}{arXiv:0810.4909}) \end{itemize} \hypertarget{conferences_and_seminars}{}\subsubsection*{{Conferences and seminars}}\label{conferences_and_seminars} \begin{itemize}% \item (past) [[Kontsevich]] in Aarhus, August 2010, \href{http://qgm.au.dk/events/show/artikel/masterclass-aug-2010/}{master class on wall crossing}; we will keep a [[wall crossing in Aarhus|nlab page]] on it \item (past) \href{http://member.ipmu.jp/domenico.orlando/FocusInvariants.html}{Focus Week on New Invariants and Wall Crossing}, May 18-22, 2009, Kashiwa Campus of the University of Tokyo \item (past) \href{http://www.math.uiuc.edu/wallcrossing}{Wall-crossing in Mathematics and Physics}, May 24-28, 2010, Department of Mathematics, University of Illinois at Urbana-Champaign \item Description of seminar on stability conditions and Stokes factors in Bonn, \href{http://www.math.uni-bonn.de/people/compgeo/Hall.pdf}{pdf} \end{itemize} Also (\hyperlink{GaiottoMooreWitten15}{Gaiotto-Moore-Witten 15}). \hypertarget{categorification}{}\subsubsection*{{Categorification}}\label{categorification} A [[categorification]] of wall crossing formulas to an [[(infinity,2)-category]] of sorts is discussed in \begin{itemize}% \item [[Davide Gaiotto]], [[Gregory Moore]], [[Edward Witten]], \emph{An Introduction To The Web-Based Formalism} (\href{http://arxiv.org/abs/1506.04086}{arXiv.1506.04086}) \end{itemize} [[!redirects wall crossing]] [[!redirects wall-crossing]] \end{document}