\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{wavefront set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{smoothness}{Smoothness}\dotfill \pageref*{smoothness} \linebreak \noindent\hyperlink{wavefront_set}{Wavefront set}\dotfill \pageref*{wavefront_set} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_quantum_field_theory}{In quantum field theory}\dotfill \pageref*{in_quantum_field_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[microlocal analysis]], the \emph{wave front set} (\hyperlink{Hoermander70}{H\"o{}rmander 70}) of a [[generalized function]] such as a [[distribution]] or a [[hyperfunction]] is a characterization of the singularity structure of the generalized function, hence of how it deviates from being an ordinary smooth function. The wave front set is the sub-bundle of the [[cotangent bundle]] that consists of all those [[direction of a vector|directions]] (non-zero [[covectors]]) such that the local [[Fourier transform]] of the distribution is not rapidly decaying in this [[direction of a vector|direction]] (\hyperlink{Hoermander90}{H\"o{}rmander 90, section 8.1}). Such covectors are stable under multiplication by positive scalars, so the wave front set can also be considered as a [[sub-bundle]] of the [[unit sphere bundle]] of the [[cotangent bundle]]. The [[projection]] of the wave front set down to the base space is the [[singular support of a distribution|singular support]] of the distribution. The additional information in the ``wave front'' [[covectors]] over this singular support may be understood as providing the directions of \emph{propagation of these singularities}. This is made precise by the \emph{[[propagation of singularities theorem]]} A notorious issue with [[distributions]] is that, when thought of as generalized functions, generally neither their [[composition of distributions]] nor their pointwise [[product of distributions]] is defined. However, closer inspection shows that the [[obstruction]] to these operations being defined for any given pair of distributions is exactly characterized by the wave front set: For instance the [[product of distributions]] is well defined precisely if the sum of their wave front sets does not intersect the zero-section ([[Hörmander's criterion]], \hyperlink{Hoermander90}{H\"o{}rmander 90, theorem 8.2.10}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{motivation}{}\subsubsection*{{Motivation}}\label{motivation} The definition of wavefront sets is motivated by a version of a [[Paley-Wiener theorem]] that characterizes smooth compactly supported functions ($\mathbb{R}^n \to \mathbb{R}$) by a growth condition on their [[Fourier transform]] $\mathcal{F}$: \begin{theorem} \label{}\hypertarget{}{} \textbf{([[Paley-Wiener-Schwartz theorem]])} The vector space $C_0^{\infty}(\mathbb{R}^n)$ of [[smooth function|smooth]] [[compact support|compactly supported]] functions ([[bump functions]]) is (algebraically and topologically) [[isomorphism|isomorphic]], via the [[Fourier transform]], to the space of [[entire functions]] $F$ which satisfy the following estimate: there is a positive constant $B$ such that for every [[integer]] $m \gt 0$ there is a constant $C_m$ such that: \begin{displaymath} F(z) \le C_m (1 + |z|)^{-m} \exp{ (B \; |\operatorname{Im}(z)|)} \end{displaymath} \end{theorem} \hypertarget{smoothness}{}\subsubsection*{{Smoothness}}\label{smoothness} We call a smooth compactly supported function that is identically $1$ in a neighbourhood of a point $x_0$ a \textbf{cutoff} function at $x_0$. Let $U \subset \mathbb{R}^n$ be open, we identify the [[cotangent bundle]] of $U$ with $U \times \mathbb{R}^n$. A subset of $U \times \mathbb{R}^n$ is said to be \textbf{conic} if it is stable under the transformation \begin{displaymath} (x, \zeta) \mapsto (x, \rho \zeta) \quad \text{with} \; \rho \gt 0 \end{displaymath} Note that a [[conical set|conic]] subset is uniquely determined by its intersection with the [[unit sphere]] bundle $U\times S^{n-1}$. \begin{defn} \label{}\hypertarget{}{} Let $f$ be a distribution and $(x_0, \zeta_0)$ with $\zeta_0 \neq 0$ be a point of the cotangent bundle of $U$. $f$ is \textbf{smooth} in $(x_0, \zeta_0)$ if there is a cutoff function $\chi$ in $x_0$ and an open cone $\Gamma_0$ in $\mathbb{R}^n$ containing $\zeta_0$ such that for every $m \gt 0$ there is a nonnegative constant $C_m$ such that for all $\zeta \in \Gamma_0$: \begin{displaymath} \| \mathcal{F}(\chi f) (\zeta) \| \le C_m (1 + \| \zeta \|)^{-m} \end{displaymath} where $\mathcal{F}(\chi f)$ is the [[Fourier transform]] (of the variable $\zeta$) of the function $\chi f$ (of the variable $x$). \end{defn} \begin{defn} \label{}\hypertarget{}{} A distribution $f$ is smooth in a [[conical set|conic]] subset $\Gamma$ of the cotangent bundle of $U$ if $f$ is smooth in a neighbourhood of every point in $\Gamma$. \end{defn} \hypertarget{wavefront_set}{}\subsubsection*{{Wavefront set}}\label{wavefront_set} Let $U \subseteq \mathbb{R}^n$ be an open subset, $T^* U$ its cotangent bundle and $f$ be a distribution on $U$. The complement of the union of all [[conical set|conic]] subsets of $T^* U$ where $f$ is smooth is the \textbf{wavefront set $WF(f)$}. Since the wavefront set is therefore itself [[conical set|conic]], it is equivalently determined by a subset of the unit sphere bundle of $T^* U$. (\hyperlink{Hoermander70}{H\"o{}rmander 70 (2.4.1)}, \hyperlink{Hoermander90}{H\"o{}rmander 90, section 8.1}) This definition turns out to make invariant sense (\hyperlink{Hoermander90}{H\"o{}rmander 90, p. 256}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{WaveFrontOfDeltaDistribution}\hypertarget{WaveFrontOfDeltaDistribution}{} \textbf{(wave front set of [[delta distribution]])} For $n \in \mathbb{N}$, consider the [[delta distribution]] \begin{displaymath} \delta(0) \in \mathcal{D}'(\mathbb{R}^n) \end{displaymath} on $n$-dimensional [[Cartesian space]], given by [[evaluation]] at the origin. Its wave front set is \begin{displaymath} WF(\delta(0)) = \left\{ (0,k) \;\vert\; k \in \mathbb{R}^n \setminus \{0\} \right\} \subset \mathbb{R}^n \times \mathbb{R}^n \simeq T^\ast \mathbb{R}^n \,. \end{displaymath} \end{example} \begin{proof} First of all the [[singular support of a distribution|singular support]] of $\delta(0)$ is clearly $singsupp(\delta(0)) = \{0\}$, hence the wave front set vanishes over $\mathbb{R}^n \setminus \{0\}$. At the origin, any bump function $b$ supported around the origin with $b(0) = 1$ satisfies $b \cdot \delta(0) = \delta(0)$ and hence the wave front set over the origin is the set of covectors along which the [[Fourier transform of distributions|Fourier transform]] $\hat \delta(0)$ does not suitably decay. But this Fourier transform is in fact a [[constant function]] and hence does not decay in any direction. \end{proof} \begin{example} \label{WaveFrontSetOfHeavisideDistribution}\hypertarget{WaveFrontSetOfHeavisideDistribution}{} \textbf{(wave front set of [[Heaviside distribution]])} Let $H \in \mathcal{D}'(\mathbb{R}^1)$ be the [[Heaviside distribution]] given by \begin{displaymath} \langle H, b\rangle \coloneqq \int_0^\infty b(x)\, d x \,. \end{displaymath} Its wave front set is \begin{displaymath} WF(H) = \{(0,k) \vert k \neq 0\} \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} For $(X,e)$ a [[globally hyperbolic spacetime]] and $P$ a [[hyperbolic differential operator]] such as the [[wave operator]]/[[Klein-Gordon operator]], then the [[propagation of singularities theorem]] says that the wave front set of any solution $f$ to $P f = 0$ is a union of [[lightlike]] [[geodesics]] and their [[cotangent vectors]]. Specifically for the [[Klein-Gordon operator]] such ditributional solutions include the [[causal propagator]] and the [[Feynman propagator]]. \end{example} \begin{example} \label{WaveFrontOfTensorProductDistribution}\hypertarget{WaveFrontOfTensorProductDistribution}{} \textbf{(wave front set of [[tensor product distribution]])} Let $u \in \mathcal{D}'(X)$ and $v \in \mathcal{D}'(Y)$ be two distributions. then the wave front set of their [[tensor product distribution]] $u \otimes v \in \mathcal{D}'(X \times Y)$ satisfies \begin{displaymath} WF(u \otimes v) \;\subset\; \left( WF(u) \times WF(v) \right) \cup \left( \left( supp(u) \times \{0\} \right) \times WF(v) \right) \cup \left( WF(u) \times \left( supp(v) \times \{0\} \right) \right) \,, \end{displaymath} where $supp(-)$ denotes the [[support of a distribution]]. \end{example} (\hyperlink{Hoermander90}{H\"o{}rmander 90, theorem 8.2.9}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{EmptyWaveFrontSetCorrespondsToOrdinaryFunction}\hypertarget{EmptyWaveFrontSetCorrespondsToOrdinaryFunction}{} \textbf{(empty wave front set corresponds to ordinary functions)} The wave front set of a [[compactly supported distribution]] is empty precisely if the distribution comes from an ordinary [[smooth function]] (hence a [[bump function]]). \end{prop} e.g. (\hyperlink{Hoermander90}{H\"o{}rmander 90, below (8.1.1)}) \begin{prop} \label{DerivativeOfDistributionRetainsOrShrinksWaveFrontSet}\hypertarget{DerivativeOfDistributionRetainsOrShrinksWaveFrontSet}{} \textbf{([[derivative of distributions]] retains or shrinks wave front set)} Taking [[derivatives of distributions]] retains or shrinks the wave front set: For $u \in \mathcal{D}'(\mathbb{R}^n)$ a distribution and $\alpha \in \mathbb{N}^n$ a multi-index with $D^\alpha$ denoting the corresponding [[partial derivative|partial]] [[derivative of distributions]], then \begin{displaymath} WF(D^\alpha u) \subset WF(u) \,. \end{displaymath} Hence if $P$ is any [[differential operator]] with [[smooth function]] [[coefficients]], then \begin{displaymath} WF(P u) \subset WF(u) \,. \end{displaymath} \end{prop} (\hyperlink{Hoermander90}{H\"o{}rmander 90, (8.1.10) (8.1.11), p. 256}) \begin{prop} \label{WaveFrontSetOfCompactlySupportedDistributions}\hypertarget{WaveFrontSetOfCompactlySupportedDistributions}{} \textbf{([[wave front set]] of [[convolution of distributions|convolution of]] [[compactly supported distributions]])} Let $u,v \in \mathcal{E}'(\mathbb{R}^n)$ be two [[compactly supported distributions]]. Then the [[wave front set]] of their [[convolution of distributions]] is \begin{displaymath} WF(u \star v) \;=\; \left\{ (x + y, k) \;\vert\; (x,k) \in WF(u) \,\text{and}\, (y,k) \in WF(u) \right\} \,. \end{displaymath} \end{prop} (\href{convolution+of+distributions#Bengel77}{Bengel 77, prop. 3.1}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[ultraviolet divergence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The concept of wave front set is due to \begin{itemize}% \item [[Lars Hörmander]], \emph{Linear differential operators}, Actes Congr. Int. Math. Nice 1970, 1, 121-133 (\href{http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0121.0134.ocr.pdf}{pdf}) \end{itemize} A textbook account for distributions on open subsets of [[Euclidean space]] is in \begin{itemize}% \item [[Lars Hörmander]], section 8.1 of \emph{The analysis of linear partial differential operators}, vol. I, Springer 1983, 1990 \end{itemize} and for distributions more generally on smooth manifolds is in \begin{itemize}% \item [[Lars Hörmander]], \emph{The analysis of linear partial differential operators}, vol. III, Springer 1994 \end{itemize} A history of the concept of wave front sets with extensive pointers to the literature is given in \hyperlink{Hoermander90}{H\"o{}rmander 90, p. 322-324}. See also \begin{itemize}% \item Wikipedia: \href{http://en.wikipedia.org/wiki/Wavefront_set}{wavefront set} \end{itemize} \hypertarget{in_quantum_field_theory}{}\subsubsection*{{In quantum field theory}}\label{in_quantum_field_theory} The application of [[microlocal analysis]] via wave front sets to the discussion of [[n-point functions]] in [[quantum field theory]] and especially [[quantum field theory on curved spacetimes]] originates with the results of \begin{itemize}% \item [[Johann Duistermaat]], [[Lars Hörmander]], sections 6.5, 6.6 of \emph{Fourier integral operators II}, Acta Mathematica 128, 183-269, 1972 (\href{https://projecteuclid.org/euclid.acta/1485889724}{Euclid}) \end{itemize} which were first picked up in \begin{itemize}% \item C. Moreno, \emph{Spaces of positive and negative frequency solutions of field equations in curved space- times. I. The Klein-Gordon equation in stationary space-times, II. The massive vector field equations in static space-times}, J. Math. Phys. 18, 2153-61 (1977), J. Math. Phys. 19, 92-99 (1978) \item [[Jonathan Dimock]], \emph{Scalar quantum field in an external gravitational background}, J. Math. Phys. 20, 2549-2555 (1979) \end{itemize} and brought into context with the [[Hadamard distributions]] needed for the [[construction]] of [[Wick algebras]] in \begin{itemize}% \item [[Marek Radzikowski]], \emph{Micro-local approach to the Hadamard condition in quantum field theory on curved space-time}, Commun. Math. Phys. 179 (1996), 529--553 (\href{http://projecteuclid.org/euclid.cmp/1104287114}{Euclid}) \end{itemize} A textbook account amplifying this usage (on [[Minkowski spacetime]]) in the mathematically rigorous construction of [[perturbative quantum field theory]] via [[causal perturbation theory]] is in \begin{itemize}% \item [[Günter Scharf]], \emph{[[Finite Quantum Electrodynamics -- The Causal Approach]]}, Berlin: Springer-Verlag, 1995, 2nd edition \item [[Günter Scharf]], \emph{[[Quantum Gauge Theories -- A True Ghost Story]]}, Wiley 2001 \end{itemize} For more see the references at \emph{[[locally covariant perturbative quantum field theory]]}. [[!redirects wavefront sets]] [[!redirects wave front set]] [[!redirects wave front sets]] [[!redirects wave-front set]] [[!redirects wave-front sets]] \end{document}