\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{weak bialgebra} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{physical_motivation}{Physical motivation}\dotfill \pageref*{physical_motivation} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{idempotents_projections}{Idempotents (``projections'')}\dotfill \pageref*{idempotents_projections} \linebreak \noindent\hyperlink{relation_to_fusion_categories}{Relation to fusion categories}\dotfill \pageref*{relation_to_fusion_categories} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{weak bialgebra} is a generalization of that of [[bialgebra]] in which the comultiplication $\Delta$ is weak in the sense that $\Delta(1)\neq 1\otimes 1$ in general; similarly the compatibility of counit with the multiplication map is weakened (counit might fail to be a morphism of algebras). (Still a special case of [[sesquialgebra]].) Correspondingly [[weak Hopf algebras]] generalize [[Hopf algebras]] accordingly. Every weak Hopf algebra defines a [[Hopf algebroid]]. \hypertarget{physical_motivation}{}\subsubsection*{{Physical motivation}}\label{physical_motivation} This kind of structures naturally comes in [[CFT]] models relation to quantum groups a root of unity: the full symmetry algebra is not quite a quantum group at root of unity, because if it were one would have to include the nonphysical quantum dimension zero finite-dimensional quantum group representations into the (pre)Hilbert space; those are the zero norm states which do not contribute to physics (like ghosts). If one quotients by these states then the true unit of a quantum group becomes an idempotent (projector), hence one deals with weak Hopf algebras instead as a price of dealing with true, physical, Hilbert space. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} A \textbf{weak bialgebra} is a tuple $(A,\mu,\eta,\Delta,\epsilon)$ such that $(A,\mu,\eta)$ is an associative unital algebra, $(A,\Delta,\epsilon)$ is a coassociative counital coalgebra and the following compatibilities, (i),(ii) and (iii), hold: (i) the coproduct $\Delta$ is multiplicative $\Delta(x)\Delta(y)= \Delta(x y)$. If only (i) is satisfied, following Böhm, Caenapeel and Janssen 2011, we may speak of a \textbf{prebialgebra}. (ii) the counit $\epsilon$ satisfies weak multiplicativity \begin{displaymath} \epsilon(x y z) = \epsilon(x y_{(1)})\epsilon(y_{(2)} z), \end{displaymath} \begin{displaymath} \epsilon(x y z) = \epsilon(x y_{(2)})\epsilon(y_{(1)} z). \end{displaymath} A prebialgebra satisfying the first (the second) of the above properties is said to be left (right) monoidal. (iii) Weak comultiplicativity of the unit: \begin{displaymath} \Delta^{(2)} (1) = (\Delta(1) \otimes 1)(1\otimes \Delta(1)) \end{displaymath} \begin{displaymath} \Delta^{(2)} (1) = (1 \otimes\Delta(1))(\Delta(1) \otimes 1) \end{displaymath} A prebialgebra satisfying the first (the second) of the above properties is said to be left (right) comonoidal. As usually in the context of coassociative coalgebras, we denoted $\Delta^{(2)} := (id\otimes\Delta)\Delta = (\Delta\otimes id)\Delta$. A weak $k$-bialgebra $A$ is a \textbf{weak Hopf algebra} if it has a $k$-linear map $S:A\to A$ (which is then called an antipode) such that for all $x\in A$ \begin{displaymath} x_{(1)} S(x_{(2)}) = \epsilon(1_{(1)} x)1_{(2)}, \end{displaymath} \begin{displaymath} S(x_{(1)})x_{(2)} = 1_{(1)} \epsilon(x 1_{(2)}), \end{displaymath} \begin{displaymath} S(x_{(1)})x_{(2)} S(x_{(3)}) = S(x) \end{displaymath} It follows that the antipode is antimultiplicative, $S(x y)=S(y)S(x)$, and anticomultiplicative, $\Delta(S(x)) = S(x)_{(1)}\otimes S(x)_{(2)} = S(x_{(2)})\otimes S(x_{(1)})$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{idempotents_projections}{}\subsubsection*{{Idempotents (``projections'')}}\label{idempotents_projections} For every weak bialgebra there are $k$-linear maps $\Pi^L,\Pi^R:A\to A$ defined by \begin{displaymath} \Pi^L(x) := \epsilon(1_{(1)} x) 1_{(2)},\,\,\,\, \Pi^R(x) := 1_{(1)}\epsilon(x 1_{(2)}). \end{displaymath} Expressions for $\Pi^L(x),\Pi^R(x)$ are already met above as the right hand sides in two of the axioms for the antipode. Maps $\Pi^L,\Pi^R$ are idempotents, $\Pi^R\Pi^R = \Pi^R$ and $\Pi^L\Pi^L = \Pi^L$: \begin{displaymath} \itexarray{ \Pi^L(\Pi^L(x)) &=& \epsilon\left(1_{(1')}\epsilon(1_{(1)}x) 1_{(2)}\right)1_{(2')} = \epsilon(1_{(1)}x)\epsilon(1_{(1')}1_{(2)}) 1_{(2')} \\ &=&\epsilon(1_{(1)}x)\epsilon(1_{(2)}) 1_{(3)} = \epsilon(1_{(1)}x)1_{(2)} = \Pi^L(x). } \end{displaymath} Notice $\epsilon(x z) = \epsilon(x 1 z) = \epsilon(x 1_{(2)})\epsilon(1_{(1)}z)) = \epsilon(x \epsilon(1_{(1)}z))1_{(2)} = \epsilon(x\Pi^L(z)) = \epsilon(\Pi^R(x)z)$. The images of the idempotents $A^R = \Pi^R(A)$ and $A^L = \Pi^L(R)$ are dual as $k$-linear spaces: there is a canonical nondegenerate pairing $A^L\otimes A^R\to k$ given by $(x,y) \mapsto \epsilon(y x)$. Also $\Pi^L(x\Pi^L(y)) = \Pi^L(x y)$ and $\Pi^R(\Pi^R(x)y) = \Pi^R(x y)$, dually $\Delta(A^L)\subset A\otimes A^L$ and $\Delta(A^R)\subset A^R\otimes A$, and in particular $\Delta(1)\in A^R\otimes A^L$. Sometimes it is also useful to consider the idempotents $\bar\Pi^L,\bar\Pi^R:A\to A$ defined by \begin{displaymath} \bar\Pi^L(x) := \epsilon(1_{(2)} x) 1_{(1)},\,\,\,\, \bar\Pi^R(x) := 1_{(2)}\epsilon(x 1_{(1)}). \end{displaymath} \begin{displaymath} \itexarray{ \bar\Pi^L(\bar\Pi^L(x))&=&\epsilon(1_{(2')}\epsilon(1_{(2)}x)1_{(1)})1_{(1')} = \epsilon(1_{(2)}x)\epsilon(1_{(2')}1_{(1)})1_{(1')} \\ &=& \epsilon(1_{(3)}x)\epsilon(1_{(2)})1_{(1)}= \epsilon(1_{(2)}x)1_{(1)} = \bar\Pi^L(x). } \end{displaymath} \hypertarget{relation_to_fusion_categories}{}\subsubsection*{{Relation to fusion categories}}\label{relation_to_fusion_categories} Under [[Tannaka duality]] (semisimple) weak Hopf algebras correspond to (multi-)[[fusion categories]] (\hyperlink{Ostrik}{Ostrik}). \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Weak comultiplications were introduced in \begin{itemize}% \item G. Mack, [[Volker Schomerus]], \emph{Quasi Hopf quantum symmetry in quantum theory}, Nucl. Phys. B370(1992) 185. \end{itemize} where also weak quasi-bialgebras are considered and physical motivation is discussed in detail. Further work in this vain is in \begin{itemize}% \item [[G. Böhm]], [[K. Szlachányi]], \emph{A coassociative $C^\ast$-quantum group with non-integral dimensions}, Lett. Math. Phys. \textbf{35} (1996) 437--456, arXiv:q-alg/9509008g/abs/q-alg/9509008); \emph{Weak $C*$-Hopf algebras: the coassociative symmetry of non-integral dimensions}, in: Quantum groups and quantum spaces (Warsaw, 1995), 9-19, Banach Center Publ. \textbf{40}, Polish Acad. Sci., Warszawa 1997. \item Florian Nill, \emph{Axioms for weak bialgebras}, \href{http://arxiv.org/abs/math/9805104}{math.QA/9805104} \item [[G. Böhm]], F. Nill, [[K. Szlachányi]], \emph{Weak Hopf algebras. I. Integral theory and $C^\ast$-structure, J. Algebra \textbf{221} (1999), no. 2, 385-438, \href{http://arxiv.org/abs/math/9805116}{math.QA/9805116} \#\{BohmNillSzlachanyi\}} \end{itemize} Now these works are understood categorically from the point of view of weak monad theory: \begin{itemize}% \item [[Gabriella Böhm]], Stefaan Caenepeel, Kris Janssen, \emph{Weak bialgebras and monoidal categories}, Comm. Algebra \textbf{39} (2011), no. 12 (special volume dedicated to Mia Cohen), 4584-4607. \href{http://arxiv.org/abs/1103.2261}{arXiv:1103.226} \item [[Gabriella Böhm]], [[Stephen Lack]], [[Ross Street]], \emph{Weak bimonads and weak Hopf monads}, J. Algebra 328 (2011), 1-30, \href{http://arxiv.org/abs/1002.4493}{arXiv:1002.4493} \item [[Gabriella Böhm]], Jos\'e{} G\'o{}mez-Torrecillas, \emph{On the double crossed product of weak Hopf algebras}, \href{arXiv/1205.2163}{arXiv:1205.2163} \end{itemize} The relation to [[fusion categories]] is discussed in \begin{itemize}% \item Takahiro Hayashi, \emph{A canonical Tannaka duality for finite semisimple tensor categories} (\href{http://arxiv.org/abs/math/9904073}{arXiv:math/9904073}) \item [[Victor Ostrik]], \emph{Module categories, weak Hopf algebras and modular invariants} (\href{http://arxiv.org/abs/math/0111139}{arXiv:math/0111139}) \end{itemize} category: algebra [[!redirects weak bialgebras]] [[!redirects weak Hopf algebra]] [[!redirects weak Hopf algebras]] \end{document}