\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{weak homotopy equivalence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{equality_and_equivalence}{}\paragraph*{{Equality and Equivalence}}\label{equality_and_equivalence} [[!include equality and equivalence - contents]] \hypertarget{weak_homotopy_equivalences}{}\section*{{Weak homotopy equivalences}}\label{weak_homotopy_equivalences} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_for_topological_spaces_and_simplicial_sets}{Definition (for topological spaces and simplicial sets)}\dotfill \pageref*{definition_for_topological_spaces_and_simplicial_sets} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivalentCharacterizations}{Equivalent characterizations}\dotfill \pageref*{EquivalentCharacterizations} \linebreak \noindent\hyperlink{RelationToHomotopyEquivalences}{Relation to homotopy equivalences}\dotfill \pageref*{RelationToHomotopyEquivalences} \linebreak \noindent\hyperlink{RelationToHomotopyTypes}{Relation to homotopy types}\dotfill \pageref*{RelationToHomotopyTypes} \linebreak \noindent\hyperlink{for_other_kinds_of_spaces}{For other kinds of spaces}\dotfill \pageref*{for_other_kinds_of_spaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExamplesOfNonReversibleWHEs}{Of non-reversible weak homotopy equivalences}\dotfill \pageref*{ExamplesOfNonReversibleWHEs} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{[[weak homotopy equivalence]]} is a map between [[topological spaces]] or [[simplicial sets]] or similar which induces [[isomorphisms]] on all [[homotopy groups]]. (The analogous concept in [[homological algebra]] is called a \emph{[[quasi-isomorphism]]}.) The [[localization]] or [[simplicial localization]] of the categories [[Top]] and [[sSet]] at the weak homotopy equivalences used as [[weak equivalences]] yields the standard [[homotopy category]] [[Ho(Top)]] and [[Ho(sSet)]] or the [[(∞,1)-category]] of [[∞-groupoids]]/[[homotopy types]], respectively. Weak homotopy equivalences are named after \emph{[[homotopy equivalences]]}. They can be identified with homotopy equivalences after one allows to replace the [[domains]] by a [[resolution]]. The corresponding notions in [[homological algebra]] are [[quasi-isomorphisms]] and [[chain homotopy]]-equivalences. From another perspective, the notion of \emph{weak homotopy equivalence} is `observational', in that a map is a weak homotopy equivalence if when we look at it through the observations that we can make of it using [[homotopy groups]] or even the [[fundamental infinity-groupoid]], it looks like an equivalence. In contrast, \emph{[[homotopy equivalence]]} is more `constructive'; in that $f$ is a homotopy equivalence if there exists an inverse for it (up to homotopy, of course). Note that both of these notions are weaker than mere [[isomorphism]] of topological spaces (homeomorphism) and so can be considered examples of [[weak equivalence]]s. There are actually two related concepts here: whether two spaces are weakly homotopy equivalent and whether a map between spaces is a weak homotopy equivalence. The former is usually defined in terms of the latter. \hypertarget{definition_for_topological_spaces_and_simplicial_sets}{}\subsection*{{Definition (for topological spaces and simplicial sets)}}\label{definition_for_topological_spaces_and_simplicial_sets} \begin{defn} \label{WeakHomotopyEquivalence}\hypertarget{WeakHomotopyEquivalence}{} For $X, Y \in$ [[Top]] or $\in$ [[sSet]] two [[topological spaces]] or [[simplicial sets]], a [[continuous function]] or [[simplicial set|simplicial map]] $f : X \to Y$ between them is called a \textbf{weak homotopy equivalence} if \begin{enumerate}% \item $f$ induces an [[isomorphism]] of [[connected components]] (path components in the case of topological spaces) \begin{displaymath} \Pi_0(f) \colon \Pi_0(X) \stackrel{\simeq}{\to} \Pi_0(Y) \end{displaymath} in [[Set]]; \item for all all [[points]] $x \in X$ and for all $(1 \leq n) \in \mathbb{N}$ $f$ induces an isomorphism on [[homotopy groups]] \begin{displaymath} \pi_n(f,x) \colon \pi_n(X,x) \stackrel{\simeq}{\to} \pi_n(Y,f(x)) \end{displaymath} in [[Grp]]. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} If $X$ and $Y$ are [[connected space|path-connected]], then (1) is trivial, and it suffices to require (2) for a single (arbitrary) $x$, but in general one must require it for at least one $x$ in each path [[connected component]]. \end{remark} $\backslash$begin\{remark\} There are many alternative definitions of weak homotopy equivalences. A simplicial map $f$ is a weak equivalence of simplicial sets if and only if $Ex^\infty f$ is a simplicial homotopy equivalence if and only if $Hom(f,A)$ is a simplicial homotopy equivalence for any [[Kan complex]] $A$ if and only if $f$ has a right relative-homotopy-lifting property with respect to the maps $\partial\Delta^n\to\Delta^n$ if and only if $f$ is a composition of an acyclic cofibration (i.e., a map with a left lifting property with respect to all maps with a right lifting property with respect to horn inclusions) and an acyclic fibration (i.e., a map with a right lifting property with respect to inclusions $\partial\Delta^n\to\Delta^n)$. A continuous map $f$ is a weak equivalence of topological spaces if and only if $|Sing(f)|$ is a homotopy equivalence of topological spaces if and only if $Hom(A,f)$ is a homotopy equivalence for any [[CW-complex]] $A$ if and only if $f$ has a right relative-homotopy-lifting property with respect to the maps $S^{n-1}\to D^n$ if and only if $f$ is a composition of an acyclic Serre cofibration (a retract of a relative CW-complex) and an acyclic [[Serre fibration]]. Both functors $|-|$ and $Sing$ preserve and reflect weak equivalences, so any of the two classes defines the other. $\backslash$end\{remark\} \begin{defn} \label{}\hypertarget{}{} The [[homotopy category]] of [[Top]] with respect to weak homotopy equivalences is [[Ho(Top)]]${}_{whe}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Accordingly, weak homotopy equivalences are the [[weak equivalences]] in the standard [[Quillen model structure on topological spaces]] and the [[Quillen model structure on simplicial sets]], and also in the [[mixed model structure]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivalentCharacterizations}{}\subsubsection*{{Equivalent characterizations}}\label{EquivalentCharacterizations} \begin{prop} \label{}\hypertarget{}{} A continuous map $f : X \to Y$ is a weak homotopy equivalence precisely if for all $n \in \mathbb{N}$ and for all [[commuting diagrams]] of continuous maps of the form \begin{displaymath} \itexarray{ S^{n-1} &\to& X \\ \downarrow && \downarrow^{\mathrlap{f}} \\ D^n &\to& Y } \,, \end{displaymath} where the left morphism is the inclusion of the $(n-1)$-[[sphere]] as the [[boundary]] of the $n$-[[ball]], there exists a continuous map $\sigma : D^n \to X$ that makes the resulting upper triangle commute and such that the lower triangle commutes up to a [[homotopy]] \begin{displaymath} \itexarray{ S^{n-1} &&\to&& X \\ \\ \downarrow && \nearrow & \swArrow& \downarrow^{\mathrlap{f}} \\\\ D^n &&\to&& Y } \end{displaymath} which is constant along $S^{n-1} \hookrightarrow D^n$. \end{prop} In this form the statement and its proof appears in (\hyperlink{Jardine}{Jardine}) (where it is also generalized to weak equivalences in a [[model structure on simplicial presheaves]]). See also around (\hyperlink{Lurie}{Lurie, prop. 6.5.2.1}). The relevant arguments are spelled out in (\hyperlink{May}{May, section 9.6}). A variant is called the \emph{HELP lemma} in (\hyperlink{Vogt}{Vogt}). \hypertarget{RelationToHomotopyEquivalences}{}\subsubsection*{{Relation to homotopy equivalences}}\label{RelationToHomotopyEquivalences} \begin{prop} \label{}\hypertarget{}{} Every [[homotopy equivalence]] is a weak homotopy equivalence. \end{prop} \begin{proof} It requires a little bit of thought to prove this, because $f$ and its homotopy inverse $g$ need not preserve any chosen basepoint. But for any $x\in X$ and any $n\ge 1$, we have a diagram \begin{displaymath} \itexarray{\pi_n(X,x) & & \to & & \pi_n(X,g(f(x)))\\ & \searrow && \nearrow && \searrow\\ && \pi_n(Y,f(x)) && \to && \pi_n(Y,f(g(f(x))))} \end{displaymath} in which the two horizontal maps are isomorphisms because $g f$ and $f g$ are [[homotopy|homotopic]] to identities. Hence, by the [[two-out-of-six property]] for isomorphisms, the diagonal maps are also all isomorphisms. \end{proof} \begin{prop} \label{}\hypertarget{}{} Conversely, any weak homotopy equivalence between [[m-cofibrant spaces]] (spaces that are homotopy equivalent to [[CW complexes]]) is a [[homotopy equivalence]]. \end{prop} \hypertarget{RelationToHomotopyTypes}{}\subsubsection*{{Relation to homotopy types}}\label{RelationToHomotopyTypes} We discuss the [[equivalence relation]] generated by weak homotopy equivalence, called \emph{(weak) [[homotopy type]]}. For the ``abelianized'' analog of this situation see at [[quasi-isomorphism]] the section \emph{\href{quasi-isomorphism#RelationToChainHomologyType}{Relation to homology type}}. \begin{prop} \label{ReflexiveAndTransitiveButNotSymmetric}\hypertarget{ReflexiveAndTransitiveButNotSymmetric}{} The existence of a weak homotopy equivalence from $X$ to $Y$ is a [[reflexive relation|reflexive]] and [[transitive relation]] on [[Top]], but it is not a [[symmetric relation]]. \end{prop} \begin{proof} Reflexivity and transitivity are trivially checked. A counterexample to symmetry is example \ref{CircleAndPseudoCircle} below. \end{proof} But we can consider the genuine equivalence relation \emph{generated} by weak homotopy equivalence: \begin{defn} \label{}\hypertarget{}{} We say two spaces $X$ and $Y$ have the same \textbf{(weak) [[homotopy type]]} if they are equivalent under the [[equivalence relation]] \emph{generated} by weak homotopy equivalence. \end{defn} \begin{remark} \label{}\hypertarget{}{} Equivalently this means that $X$ and $Y$ have the same (weak) homotopy type if there exists a [[zigzag]] of weak homotopy equivalences \begin{displaymath} X \leftarrow \to\leftarrow \dots \to Y \,. \end{displaymath} This in turn is equivalent to saying that $X$ and $Y$ become [[isomorphism|isomorphic]] in the [[homotopy category]] [[Ho(Top)]]/[[Ho(sSet)]] with the weak homotopy equivalences [[localization|inverted]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Two spaces $X$ and $Y$ may have isomorphic homotopy groups without being weak homotopy equivalence: for this all the isomorphisms must be induced by an actual map $f : X \to Y$, as in the above definition. However, if, roughly, one remembers, how all the homotopy groups [[nLab:action|act]] on each other, then this is enough information to exhibit the full homotopy type. This collection of data is called the \emph{[[Postnikov tower]]} decomposition of a homotopy type. \end{remark} \hypertarget{for_other_kinds_of_spaces}{}\subsection*{{For other kinds of spaces}}\label{for_other_kinds_of_spaces} A map of [[simplicial sets]] is called a weak homotopy equivalence equivalently if its [[geometric realization]] is a weak homotopy equivalence of topological spaces, as above. (Since the geometric realization of any simpicial set is a [[CW complex]], in this case its geometric realization is actually a [[homotopy equivalence]].) Likewise, a [[functor]] between [[small category|small]] categories is sometimes said to be a weak homotopy equivalence if its [[nerve]] is a weak homotopy equivalence of simplicial sets, hence of topological spaces after [[geometric realization of categories]]. These are the weak equivalences in the [[Thomason model structure]] on categories (not the [[canonical model structure]]). The statement of [[Quillen's theorem A]] and [[Quillen's theorem B]] in in this contex. Similarly, one can define weak homotopy equivalences between any sort of object that has a [[geometric realization]], such as a [[cubical set]], a [[globular set]], an [[n-category]], an [[n-fold category]], and so on. Note that in some of these cases, such as as simplicial sets, symmetric sets, and probably cubical sets, there is also a notion of ``homotopy equivalence'' from which this notion needs to be distinguished. A simplicial homotopy equivalence, for instance, is a simplicial map $f:X\to Y$ with an inverse $g:Y\to X$ and simplicial homotopies $X\times \Delta^1 \to X$ and $Y\times \Delta^1 \to Y$ relating $f g$ and $g f$ to identities. A different direction of generalization is the notion of a [[homotopy equivalence of toposes]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExamplesOfNonReversibleWHEs}{}\subsubsection*{{Of non-reversible weak homotopy equivalences}}\label{ExamplesOfNonReversibleWHEs} We discuss examples of weak homotopy equivalences that have no weak homotopy equivalence going the other way, according to prop. \ref{ReflexiveAndTransitiveButNotSymmetric} above. \begin{example} \label{CircleAndPseudoCircle}\hypertarget{CircleAndPseudoCircle}{} Let $S^1 \in$ [[Top]] denote the ordinary [[circle]] and $\mathbb{S}$ the [[pseudocircle]]. There is a [[continuous function]] $S^1 \to \mathbb{S}$ which is a weak homotopy equivalence, hence in particular $\pi_1(\mathbb{S}) \simeq \mathbb{Z}$. But every continuous map the other way round has to induce the trivial map on $\pi_1$. \end{example} This is the simplest in a class of counter-examples discussed in (\hyperlink{McCord}{McCord}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[equality]] \item [[isomorphism]] \item [[equivalence]] \item [[weak equivalence]] \item [[homotopy equivalence]], \textbf{weak homotopy equivalence} \begin{itemize}% \item [[rational homotopy equivalence]] \item [[n-equivalence]] \end{itemize} [[stable weak homotopy equivalence]] \item [[Bousfield equivalence]] \item [[homotopy equivalence of toposes]] \item [[equivalence in an (∞,1)-category]] \item [[equivalence of (∞,1)-categories]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A general account is for instance in section 9.6 of \begin{itemize}% \item [[Peter May]], \emph{[[A Concise Course in Algebraic Topology]]} \end{itemize} The characterization of weak homotopy equivalences by lifts up to homotopy seems is in \begin{itemize}% \item [[Rick Jardine]], \emph{Simplicial Presheaves}, Journal of Pure and Applied Algebra 47, 1987, no.1, 35-87. \end{itemize} \begin{itemize}% \item [[Rainer Vogt]], \emph{The HELP-Lemma and its converse in Quillen model categories} (\href{http://arxiv.org/abs/1004.5249}{arXiv:1004.5249}) \end{itemize} For related and general discussion see also section 6.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} Examples for the non-symmetry of the weak homotopy equivalence relation are in \begin{itemize}% \item Michael McCord, \emph{Singular homology groups and homotopy groups of finite topological spaces}, Duke Math. J. Volume 33, Number 3 (1966), 465-474. (\href{http://projecteuclid.org/euclid.dmj/1077376525}{EUCLID}) \end{itemize} See also \begin{itemize}% \item Topospaces-Wiki, \emph{\href{http://topospaces.subwiki.org/wiki/Weak_homotopy_equivalence_of_topological_spaces}{Weak homotopy equivalence of topological spaces}} \end{itemize} [[!redirects weak homotopy equivalences]] \end{document}