\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{weak limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{weak_pullbacks}{Weak pullbacks}\dotfill \pageref*{weak_pullbacks} \linebreak \noindent\hyperlink{weak_terminal_objects}{Weak terminal objects}\dotfill \pageref*{weak_terminal_objects} \linebreak \noindent\hyperlink{projective_objects_and_exact_completion}{Projective objects and exact completion}\dotfill \pageref*{projective_objects_and_exact_completion} \linebreak \noindent\hyperlink{RelationToHomotopyLimits}{Relation to homotopy limits}\dotfill \pageref*{RelationToHomotopyLimits} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{weak limit} for a [[diagram]] in a [[category]] is a [[cone]] over that diagram which satisfies the existence property of a [[limit]] but not necessarily the uniqueness. The dual concept is a [[weak colimit]]. Beware that ``weak'' here does \textbf{not} correspond to that in ``[[weak n-category]]'', in particular it does \textbf{not} refer to [[homotopy limits]]. Nevertheless, there is a relation, see \hyperlink{RelationToHomotopyLimits}{below}. It is due to this relation that weak limits in [[homotopy categories]] play a key role in the [[Brown representability theorem]]. \hypertarget{weak_pullbacks}{}\subsection*{{Weak pullbacks}}\label{weak_pullbacks} A \textbf{weak pullback} of a [[cospan]] \begin{displaymath} A\overset{f}{\to} C \overset{g}{\leftarrow} B \end{displaymath} (in some [[category]]) is a [[commutative diagram|commutative square]] \begin{displaymath} \itexarray{ P & \overset{p}{\to} & A \\ {}^{\mathllap{q}} \downarrow && \downarrow^{\mathrlap{f}} \\ B & \overset{g}{\to} & C } \end{displaymath} such that for every commuting square \begin{displaymath} \itexarray{ X & \overset{x}{\to} & A\\ {}^{\mathllap{y}} \downarrow && \downarrow^{\mathrlap{f}}\\ B & \overset{g}{\to} & C} \end{displaymath} there exists a morphism $h: \colon X\to P$, not necessarily unique, such that $x = h p$ and $y = h q$; If the actual [[pullback]] $A \underset{C}{\times}B$ exists, then this condition means equivalently that the universal morphism \begin{displaymath} P \longrightarrow A \underset{C}{\times}B \end{displaymath} is a [[split epimorphism]]. \hypertarget{weak_terminal_objects}{}\subsection*{{Weak terminal objects}}\label{weak_terminal_objects} Every [[inhabited set]] is a weak [[terminal object]] in [[Set]], since there always exists a [[function]] from any [[set]] to any inhabited set. But only a [[singleton]] is a terminal object. \hypertarget{projective_objects_and_exact_completion}{}\subsection*{{Projective objects and exact completion}}\label{projective_objects_and_exact_completion} In any category with finite limits and [[projective object|enough projectives]], the full [[subcategory]] of [[projective object]]s has weak finite limits. For example, given a cospan $A\overset{f}{\to} C \overset{g}{\leftarrow} B$ of projective objects, let $P\to A\times_C B$ be a projective cover of the actual pullback; then any square \begin{displaymath} \itexarray{ X & \overset{x}{\to} & A\\ ^y \downarrow && \downarrow ^f\\ B & \overset{g}{\to} & C} \end{displaymath} with $X$ projective induces a morphism $X\to A\times_C B$, which lifts to a morphism $X\to P$ since $X$ is projective. Conversely, from any category with weak finite limits one can construct an [[exact category|exact completion]] in which the original category sits as the projective objects, and the exact categories constructible in this way are precisely those having enough projectives. \hypertarget{RelationToHomotopyLimits}{}\subsection*{{Relation to homotopy limits}}\label{RelationToHomotopyLimits} Unlike usages of `weak' in terms like [[weak n-category]], a weak limit is not be like a [[homotopy limit]] or a [[2-limit]], which satisfy uniqueness (as well as existence) albeit only up to higher [[homotopy|homotopies]] or [[weak equivalence|equivalences]]. However, some homotopy limits induce the corresponding type of weak limit in the corresponding [[homotopy category]]. For example, suppose that \begin{displaymath} \itexarray{ P & \overset{p}{\to} & A\\ ^q \downarrow && \downarrow ^f\\ B & \overset{g}{\to} & C} \end{displaymath} is a homotopy pullback in some category $M$ having a notion of [[homotopy]], such as a [[model category]]. In particular, this square commutes up to homotopy, and thus it commutes in the homotopy category $Ho(M)$. Then any square \begin{displaymath} \itexarray{ X & \overset{x}{\to} & A\\ ^y \downarrow && \downarrow ^f\\ B & \overset{g}{\to} & C} \end{displaymath} that commutes in $Ho(M)$ commutes up to homotopy in $M$, and thus (by the (``local'') universal property of homotopy pullbacks), there is a map $h:X\to P$ and homotopies $p h \simeq x$ and $q h\simeq y$; thus the given square is a weak pullback in $Ho(M)$. While the universal property of a homotopy pullback means that $h$ is unique up to homotopy, this is only true for a given \emph{choice} of homotopy $f x \simeq g y$, and different such homotopies can induce inequivalent $h$`s. Thus in $Ho(M)$, which remembers only the \emph{existence} of homotopies, we have only a weak pullback. Note, though, that not \emph{all} homotopy limits produce weak limits in the homotopy category, because in general it will not be possible to lift a cone that commutes in $Ho(M)$ to a cone that commutes up to \emph{coherent} homotopy in $M$. However, in ``simple'' cases such as pullbacks, products, equalizers, sequential inverse limits, and so on, this is always true (and it will be true whenever the diagram category is a [[quiver]]). On the other hand, homotopy products in $M$ give actual (not weak) products in $Ho(M)$, since there are no homotopies necessary. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[weak multilimit]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Freyd]], \emph{Representations in abelian categories} 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp. 95--120 Springer, New York \end{itemize} [[!redirects weak limits]] [[!redirects weak pullback]] [[!redirects weak pullbacks]] [[!redirects weak pushout]] [[!redirects weak pushouts]] [[!redirects weak finite limit]] [[!redirects weak finite limits]] \end{document}