\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{well-order} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{wellorders_are_linear}{Well-orders are linear}\dotfill \pageref*{wellorders_are_linear} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{interpretation_as_an_ordinal_number}{Interpretation as an ordinal number}\dotfill \pageref*{interpretation_as_an_ordinal_number} \linebreak \noindent\hyperlink{simulations}{Simulations}\dotfill \pageref*{simulations} \linebreak \noindent\hyperlink{successor}{Successor}\dotfill \pageref*{successor} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{well-order} on a set $S$ is a [[relation]] $\prec$ that allows one to interpret $S$ as an [[ordinal number]] $\alpha$ and $\prec$ as the relation $\lt$ on the ordinal numbers less than $\alpha$. In particular, one can do [[induction]] on $S$ over $\prec$ (although the more general [[well-founded relations]] also allow this). The \emph{[[well-ordering theorem]]} states precisely that every set may be equipped with a well-order. This theorem follows from the [[axiom of choice]], and is equivalent to it in the presence of [[excluded middle]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[binary relation]] $\prec$ on a [[set]] $S$ is a \textbf{well-order} if it is [[transitive relation|transitive]], [[extensional relation|extensional]], and [[well-founded relation|well-founded]]. A set equipped with a well-order is called a \textbf{well-ordered set}, or (following `[[partial order|poset]]') a \textbf{woset}. Actually, the term `well-ordered' came first; `well-order' is a back formation, which explains the strange grammar. Other definitions of a well-order may be found in the literature; they are equivalent given [[excluded middle]], but the definition above seems to be the most powerful in [[constructive mathematics]]. Specifically: \begin{itemize}% \item a well-order is precisely a [[well-founded relation|well-founded]] [[linear order]]; \item a well-order is precisely a [[well-founded relation|well-founded]] [[total order]]; \item (assuming also [[dependent choice]]) a well-order is precisely a linear order $\prec$ with no infinite descending sequence $\cdots \prec x_2 \prec x_1 \prec x_0$; \item (assuming also [[dependent choice]]) a well-order is precisely a total order $\preceq$ such that every infinite descending sequence $\cdots \preceq x_2 \preceq x_1 \preceq x_0$ has $x_i = x_{i^+}$ for some $i$ (and hence for infinitely many $i$); \item a well-order on $S$ is precisely a [[linear order]] $\prec$ with the property that every [[inhabited subset]] $U$ of $S$ has a least element (an element $\bot_U$ such that no $x \in U$ satisfies $x \prec \bot_U$; \item a well-order on $S$ is precisely a [[total order]] $\preceq$ with the property that every [[inhabited subset]] $U$ of $S$ has a least element (an element $\bot_U$ such that every $x \in U$ satisfies $\bot_U \preceq x$. \end{itemize} The really interesting thing here is that every well-order is linear; it is a constructive theorem that every linear order is weakly extensional (and so extensional if well-founded) and transitive. (For a [[weak counterexample]], take the set of [[truth values]] with $x \prec y$ iff $y$ is true and $x$ is false; this is a well-order that's linear iff [[excluded middle]] holds.) For the other equivalences, we're simply using well-known classical equivalents for well-foundedness and the classical correspondence between a linear relation $\prec$ and its [[reflexive closure]] $\preceq$. For reference, a \textbf{classical well-order} is any order satisfying the last definition (a total order that is classically well-founded). A classically well-ordered set is a [[choice object|choice set]], and so if any set with at least $2$ elements has a classical well-order, [[excluded middle]] follows. \hypertarget{wellorders_are_linear}{}\subsubsection*{{Well-orders are linear}}\label{wellorders_are_linear} As stated above, well-founded extensional transitive relations $\prec$ on a set $X$ are linear, assuming [[classical logic]]. \begin{proof} Order $X \times X$ [[lexicographic order|lexicographically]]: $(a, b) \prec (a', b')$ if either $a \prec a'$ in $X$ or $a = a'$ and $b \prec b$ in $X$. It is not hard to see that the lexicographic order is well-founded (and in fact a well-order, although we do not need this). Now let $A \subset X \times X$ be the set of pairs $(x, y)$ of non-equal elements $x$ and $y$ that are incomparable in $X$, and suppose $A$ is inhabited. Then $A$ has a minimal element $(a, b)$ (using excluded middle). Then, for every $x \prec b$, either $a \preceq x$ or $x \preceq a$. If the former holds for some $x$, then $a \prec b$ follows by transitivity, contradiction. Hence $x \prec a$ for every $x \prec b$. Now let $a'$ be minimal such that $x \prec a' \preceq a$ for every $x \prec b$. Claim: \begin{displaymath} \{x: x \prec a'\} = \{x: x \prec b\}. \end{displaymath} We know already the right side is contained in the left. In the other direction, suppose $x \prec a'$. Since $x \prec a$ and $(a, b)$ was chosen minimal in the lexicographic order, $x$ and $b$ are comparable. If $b \preceq x \prec a'$, this contradicts minimality of $a'$. Thus $x \prec b$, i.e., the left side is contained in the right. But now, by extensionality, $a' = b$, whence $b \preceq a$, contradiction. Therefore $A$ was empty, so that $X$ is [[connected relation|connected]] and therefore (being already transitive and irreflexive and using excluded middle again) a linear order. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Any [[finite set|finite]] [[linearly ordered set]] $\{x_1 \lt \cdots \lt x_n\}$ is well-ordered. \item The set of [[natural numbers]] is well-ordered under the usual order $\lt$. \item More generally, any set of [[ordinal numbers]] (or even the [[proper class]] of all ordinal numbers) is well-ordered under the usual order $\lt$ (which, constructively, may not be linear). \item The [[cardinal numbers]] of well-orderable sets (the well-orderable cardinals), forming a [[retract]] of the ordinals, are well-ordered. So by the well-ordering theorem, the class of \emph{all} cardinal numbers is well-ordered. \item A special case of the well-ordering theorem is the existence of a well-order on the set of [[real numbers]]; this is enough for many applications of the [[axiom of choice]] to [[analysis]]. \end{itemize} \hypertarget{interpretation_as_an_ordinal_number}{}\subsection*{{Interpretation as an ordinal number}}\label{interpretation_as_an_ordinal_number} Any well-ordered set $S$ defines an [[ordinal number]] $\alpha$ and an order isomorphism $r$ between $S$ and the set of ordinal numbers less than $\alpha$; as such, $S$ may be identified (up to isomorphism of wosets) with the von Neumann ordinal $\alpha$. The idea is that the minimal element $\bot$ of $S$ itself (if any) is mapped to the ordinal number $0$, the minimal element of $S \setminus \{\bot\}$ (if any) is mapped to $1$, and so on; after which the next element of $S$ (if any) is mapped to $\omega$, and so on; and so on. This may be defined immediately (and constructively) as a recursively defined function from $S$ to the class of all ordinal numbers: \begin{displaymath} r(x) = \sup_{t \prec x} r(t)^+ ; \end{displaymath} the validity of this sort of recursive definition is precisely what the well-foundedness of $\prec$ allows. Here, $\beta^+$ is the [[successor]] of the ordinal number $\beta$, and $\sup$ is the [[supremum]] operation on ordinal numbers (which is the [[union]] of von Neumann ordinals). Since $S$ is a set, the image of $r$ in the class of all ordinals is also a set (by the [[axiom of replacement]]), and one can now prove that $r$ is an order isomorphism between $S$ and the set of ordinals less than the next ordinal, $\alpha \coloneqq (\im r)^+$. \hypertarget{simulations}{}\subsection*{{Simulations}}\label{simulations} Given two well-ordered sets $S$ and $T$, a [[function]] $f\colon S \to T$ is a \textbf{[[simulation]]} of $S$ in $T$ if \begin{itemize}% \item $f(x) \prec f(y)$ whenever $x \prec y$ and \item given $t \prec f(x)$, there exists $y \prec x$ with $t = f(y)$. \end{itemize} Note that any simulation of $S$ in $T$ must be unique. Thus, well-ordered sets and simulations form a category that is in fact a (large) [[preorder]], whose reflection in the category of [[posets]] is in fact the poset of [[ordinal numbers]]. \hypertarget{successor}{}\subsection*{{Successor}}\label{successor} A well-ordered set $S$ comes equipped with a \textbf{[[successor]]}, which is a [[partial function|partial map]] $succ\colon S \to S \,$ that sends $a \in S$ to the lowest element of the subset $S_a := \{ s \in S, a \prec s\}$, whenever this set is inhabited. \begin{defn} \label{}\hypertarget{}{} A \textbf{limit} well-order is a well-order $S$ whose successor map is a [[total function]]. \end{defn} Similarly, one may define a successor [[functor]] on the [[category]] of well-ordered sets, taking $S$ to the well-order obtained by freely adjoining a (new) top element to $S$. Since this category (which is [[thin category|thin]]) can be regarded as itself a well-ordered [[proper class]], this is a special case of the successor operation above. (Hence the ordinal of all ordinals is a limit ordinal.) \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[well-quasi-order]] \end{itemize} [[!redirects well order]] [[!redirects well orders]] [[!redirects well-order]] [[!redirects well-orders]] [[!redirects well ordering]] [[!redirects well orderings]] [[!redirects well-ordering]] [[!redirects well-orderings]] [[!redirects well ordered]] [[!redirects well-ordered]] [[!redirects well ordered set]] [[!redirects well ordered sets]] [[!redirects well-ordered set]] [[!redirects well-ordered sets]] [[!redirects woset]] [[!redirects wosets]] \end{document}