\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{well-ordering theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement_and_proof}{Statement and proof}\dotfill \pageref*{statement_and_proof} \linebreak \noindent\hyperlink{consequences}{Consequences}\dotfill \pageref*{consequences} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{assessment}{Assessment}\dotfill \pageref*{assessment} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{well-ordering theorem} is a famous result in [[set theory]] stating that every [[set]] may be [[well-order|well-ordered]]. Fundamental for [[Georg Cantor| G. Cantor's]] approach to [[ordinal arithmetic]] it was an open problem until [[Ernst Zermelo|E. Zermelo]] gave a [[proof]] in 1904 using the [[axiom of choice]] (to which it is in fact equivalent if one admits the principle of [[excluded middle]]). Hence, [[classical mathematics|classically]], the well-ordering theorem is one of the many equivalent formulations of the [[axiom of choice]] like also e.g. [[Zorn's lemma]]. \hypertarget{statement_and_proof}{}\subsection*{{Statement and proof}}\label{statement_and_proof} Given any [[set]] $S$, there exists a [[well-order]] $\prec$ on $S$. The first proof was given in (\hyperlink{Zermelo04}{Zermelo 1904}). Within the nLab, the article [[Zorn's lemma]] gives a standard informal proof that can be formalized in [[ZFC]] under [[classical logic]], as well as the easy argument that conversely, the well-ordering principle (in its classical ``least element'' form; see below) implies the [[axiom of choice]] and Zorn's lemma. \hypertarget{consequences}{}\subsection*{{Consequences}}\label{consequences} If every set can be well-ordered, then the natural map from [[ordinal number]]s to [[cardinal number]]s is a [[surjection]]. Since these form proper classes, the ordinary axiom of choice will not split this surjection automatically; however, we can easily split it by assigning each cardinal number to the \emph{smallest} ordinal number with that cardinality. (This does require [[excluded middle]], however.) In this way, a cardinal number may be \emph{defined} to be an ordinal number that is \emph{initial}: such that no smaller ordinal number has the same cardinality. As in the argument above, the [[axiom of choice]] follows; given any [[surjection]] $f: A \to B$, place a well-ordering on $A$ and then split $f$ by mapping an element $y$ of $B$ to the smallest element $x$ of $A$ such that $y = f(x)$. Again, this uses [[excluded middle]] to show that such a smallest element exists, so the well-ordering principle does not (seem to) imply the axiom of choice constructively. To get the large (or ``global'') axiom of choice (that any surjection between proper classes splits), we need a large well-ordering theorem: that every proper class can be well-ordered. The large principles do not follow from the small ones. \hypertarget{history}{}\subsection*{{History}}\label{history} \textbf{Georg Cantor} first developed [[set theory]] in the context of studying well-ordered sets of [[real number]]s whence the validity of the well-ordering principle became important for his theory of [[ordinal numbers]]. In his 1883 paper he calls it a \emph{`fundamental and weighty law of thought that is remarkable for his generality'} and promised to come back to it later (\hyperlink{Cantor32}{Cantor 1932}, p.169). In the following, he announced proofs but they failed to materialize so that he was forced to take it as an assumption.\footnote{This contrasts with Cantor's attitude towards the axiom of choice which he used implicitly but never thematised explicitly. In fact, the full explicit awareness of the use of the axiom choice in mathematics had to await the controversy over Zermelo's well-ordering theorem in 1904 (with some anticipation by G. Peano and B. Levi earlier).} Consequently, the well-ordering principle ended as `a very strange claim' second on [[Hilbert's problems|Hilbert's millenium list]] of open problems in mathematics in 1900. Then in 1904, the Hungarian mathematician J. K\"o{}nig announced a proof that the [[continuum]] could not be well-ordered but had to retract the proof. Soon afterwards in 1904, [[Ernst Zermelo]] finally gave a proof using the [[axiom of choice]] following a suggestion by E. Schmidt. The proof, albeit correct, was met with heavy criticism by prominent mathematicians so that Zermelo published a new proof and a defense of the contested axiom of choice in 1908. The attempt to make explicit the set-theoretic assumptions in the proof led him to publish his axioms for set theory in the same year which became later a part of [[Zermelo-Fraenkel set theory]]. Hence the 1904ff controversy proved to become a \emph{decisive watershed for the development of modern mathematics}: triggering the advent of set-theoretic [[foundation of mathematics]] and putting the problem of non-constructive methods of proof on the agenda. \hypertarget{assessment}{}\subsection*{{Assessment}}\label{assessment} That the well-ordering theorem is more of a \emph{theorem} in need of a proof, while the axiom of choice is more of an \emph{axiom} to be assumed without proof is, of course, a matter of opinion, but it's reflected in Jerry Bona's famous quotation: \begin{quote}% The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who can tell about [[Zorn's lemma]]? \end{quote} Ironically, in [[constructive mathematics]], the well-ordering principle is (seemingly) actually \emph{weaker} than the full axiom of choice, as it does not imply excluded middle by itself. It does, however, imply the full axiom of choice (and hence excluded middle) if by `well-order' we mean a \emph{classical} [[well-order]], in the sense that every inhabited subset has a least element, rather than the constructively sensible notion of well-order that [[well-founded relation|merely permits inductive proofs]]. [[Zorn's lemma]] is likewise constructively weaker than the axiom of choice, although it is not particularly useful without excluded middle. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Zorn's lemma]] \item [[axiom of choice]] \item [[Hartogs number]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original proof is in \begin{itemize}% \item [[Ernst Zermelo]], \emph{Beweis, da\ss{} jede Menge wohlgeordnet werden kann}, Mathematische Annalen \textbf{59} (1904) pp.514-516. (\href{http://gdz.sub.uni-goettingen.de/no_cache/en/dms/load/img/?IDDOC=28526}{gdz}) \end{itemize} The second proof together with an eloquent defense of the axiom of choice can be found in \begin{itemize}% \item [[Ernst Zermelo]], \emph{Neuer Beweis f\"u{}r die M\"o{}glichkeit einer Wohlordnung} , Mathematische Annalen \textbf{65} (1908) pp.107-128. (\href{http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002261952}{gdz}) \end{itemize} Cantor's texts are collected together with comments by Zermelo in \begin{itemize}% \item [[Ernst Zermelo]] (ed.), \emph{Georg Cantor - Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts} , Springer Berlin 1932. (\href{http://gdz.sub.uni-goettingen.de/dms/load/toc/?PPN=PPN237853094}{gdz}) \end{itemize} English versions of Zermelo's papers are in \begin{itemize}% \item J. van Heijenoort (ed.), \emph{From Frege to G\"o{}del - A Source Book in Mathematical Logic 1879-1931} , Harvard UP 1967. \end{itemize} On the relation between AC and the well-ordering principle in general toposes see \begin{itemize}% \item [[Peter Freyd]], \emph{Choice and Well-ordering} , APAL \textbf{35} (1987) pp.149-166. \item M.-M. Mawanda, \emph{Well-ordering and Choice in Toposes} , JPAA \textbf{50} (1988) pp.171-184. \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] vol. II}, Oxford UP 2002. (D4.5, pp.987-998) \item J. Todd Wilson, ``An Intuitionistic version of Zermelo's proof that every choice set can be well-ordered'', J. Symbolic Logic, 66:3 (2001), 1121--1126; (\href{http://www.jstor.org/stable/2695096}{JSTOR}: paywalled), \href{https://github.com/lambdacalculator/lean-choice}{formalization in the Lean Theorem Prover}. \end{itemize} [[!redirects well-ordering theorem]] [[!redirects well-ordering principle]] \end{document}