\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{zeta function} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{FunctionFieldAnalogy}{Function field analogy}\dotfill \pageref*{FunctionFieldAnalogy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_algebraic_geometry}{In algebraic geometry}\dotfill \pageref*{in_algebraic_geometry} \linebreak \noindent\hyperlink{categorical_approaches}{Categorical approaches}\dotfill \pageref*{categorical_approaches} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{zeta function} originates in [[number theory]], but to get an idea of what they ``really are'' it is helpful to proceed anachronistically: $\zeta$-functions are [[meromorphic functions]] $s \mapsto \zeta(s)$ on the [[complex plane]], which behave like like [[analytic continuations]] of [[traces]] of powers \begin{displaymath} s \mapsto Tr \left(\frac{1}{H}\right)^s \end{displaymath} of suitable [[elliptic differential operators]] $H$ (in [[physics]] these are [[regularization (physics)|regularized]] [[traces]] of [[Feynman propagators]] leading to expressions for [[vacuum amplitudes]]), which means that for sufficiently nice such $H$ these are analytic continuations in $s$ of sums of the form \begin{displaymath} s \mapsto \underset{\lambda}{\sum} \lambda^{-s} \,, \end{displaymath} where the summation is over the [[eigenvalues]] $\lambda$ of $H$. Indeed, such \emph{[[zeta functions of elliptic differential operators]]} constitutes one class of examples of zeta functions. Of particular interest is the case where $H$ is a [[Laplace operator]] of a [[hyperbolic manifold]] and in particular on a hyperbolic [[Riemann surface]], for that case one obtains the \emph{[[zeta function of a Riemann surface]]}, in particular the \emph{[[Selberg zeta function]]}. In modern language one also speaks of \emph{[[L-functions]]}. Where a zeta function of some space is like the [[Feynman propagator]] of \emph{the} canonical [[Laplace operator]] of that space, an L-function is defined from an extra ``twisting'' information such as that of a [[flat bundle]]/[[local system of coefficients]] on the space (and is hence like the [[Feynman propagator]] of the corresponding twisted/coupled [[Laplace operator]]). The major properties satisfied by anything that qualifies as a zeta function or [[L-functions]] are: these are [[meromorphic functions]] $s \mapsto L(s)$ on the [[complex plane]] such that \begin{enumerate}% \item for $\Re(s) \gt 1$ they have a [[convergence|converging]] [[series]] expansion of the above form, and/or a [[infinite product|multiplicative series]] expression, the \emph{[[Euler product]]}; \item such that [[analytic continuation]] of the series expression exists to a meromorphic function $L(-)$ on the complex plane; \item and such that the result satisfies a \emph{[[functional equation]]} which says that the product $\hat L$ of $L$ with some correcion functions satisfies $\hat L(1-s) = \hat L(s)$. \end{enumerate} Proceeding from the above class of examples in [[complex analytic geometry]] one may wonder if there are [[analogy|analogs]] also in [[arithmetic geometry]]. Indeed, by the [[function field analogy]] there are. All the way down ``on [[Spec(Z)]]'' the analog of the [[Selberg zeta function]] is the [[Riemann zeta function]], which \emph{historically} is the first of all zeta functions, defined by [[analytic continuation]] of the [[series]] \begin{displaymath} s \mapsto \underoverset{n = 1}{\infty}{\sum} n^{-s} \,. \end{displaymath} The \emph{[[Riemann hypothesis]]} [[conjecture|conjectures]] a characterization of the [[roots]] of this zeta function and is regarded as one of the outstanding problems in [[mathematics]]. It has evident analogs for all other zeta functions (for some of which it has been proven). More generally, over [[arithmetic curves]] which are [[spectrum of a commutative ring|spectra]] of [[rings of integers]] of more general [[number fields]], the Riemann zeta function has generalization to the \emph{[[Artin L-functions]]} defined intrinsically in terms of [[characteristic polynomials]] of [[Galois representations]]. When the Galois representation is 1-dimensional, then the Artin L-function may be expressed (by ``[[Artin reciprocity]]'') in terms of ``more arithmetic'' data by [[Dirichlet L-functions]] and [[Hecke L-functions]]. When the Galois representation is higher dimensional, then the [[Langlands correspondence]] [[conjecture]] asserts that the Artin L-function may be expressed ``arithmetically'' as the [[automorphic L-function]] of an [[automorphic form]]. Similarly on [[arithmetic curves]] given by [[function fields]] there is the [[Goss zeta function]] and in [[higher dimensional arithmetic geometry]] the [[Weil zeta function]], famous from the \emph{[[Weil conjectures]]}. The When interpreting the [[Frobenius morphisms]] that appear in the [[Artin L-functions]] geometrically as flows (as discussed at \emph{\href{Borger's+absolute+geometry#Motivation}{Borger's arithmetic geometry -- Motivation}}) then this induces an evident analog of [[zeta function of a dynamical system]]. This in turn has strong analogies with [[Alexander polynomials]] in [[knot theory]] (see at \emph{[[arithmetic topology]]}). [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{FunctionFieldAnalogy}{}\subsubsection*{{Function field analogy}}\label{FunctionFieldAnalogy} One way to understand the plethora of different zeta functions is to see them as the incarnation of the same general concept in different flavors of [[geometry]]. This is expressed at least in parts by the [[!include function field analogy -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[multiple zeta values]], [[motivic multiple zeta values]], [[motivic integration]], [[motive]] \item [[Weil conjecture]] \item [[Riemann hypothesis]] \item there are attempts to understand the Riemann zeta function as the spectrum of a [[Hamiltonian]] of a [[quantum mechanical system]]. See at \emph{[[Riemann hypothesis and physics]]}. \item [[Beilinson regulator]] \item [[zeta function of a Riemann surface]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A useful survey of the zoo of zeta functions is in \begin{itemize}% \item [[Jeffrey Lagarias]], \emph{Number theory zeta functions and Dynamical zeta functions} (\href{http://www.math.lsa.umich.edu/~lagarias/doc/numberthzeta.pdf}{pdf}) \end{itemize} Further general review includes \begin{itemize}% \item E. Kowalski, first part of \emph{Automorphic forms, L-functions and number theory (March 12--16) Three Introductory lectures} (\href{http://www.math.ethz.ch/~kowalski/lectures.pdf}{pdf}) \item [[Alain Connes]], [[Matilde Marcolli]], chapter II of \emph{[[Noncommutative Geometry, Quantum Fields and Motives]]} \end{itemize} Discussion in the more general context of [[higher dimensional arithmetic geometry]] is in \begin{itemize}% \item [[Ivan Fesenko]], \emph{Adelic approch to the zeta function of arithmetic schemes in dimension two}, Moscow Math. J. 8 (2008), 273--317 (\href{https://www.maths.nottingham.ac.uk/personal/ibf/ada.pdf}{pdf}) \end{itemize} \hypertarget{in_algebraic_geometry}{}\subsubsection*{{In algebraic geometry}}\label{in_algebraic_geometry} \begin{itemize}% \item [[Yuri Manin]], \emph{Lectures on zeta functions and motives (according to Deninger and Kurokawa)}, Ast\'e{}risque \textbf{228}:4 (1995) 121--163, and preprint MPIM1992-50 \href{http://www.mpim-bonn.mpg.de/preblob/4793}{pdf} \item Nobushige Kurokawa, \emph{Zeta functions over $F_1$}, Proc. Japan Acad. Ser. A Math. Sci. \textbf{81}:10 (2005) 180-184 \href{http://projecteuclid.org/euclid.pja/1135791771}{euclid} \item [[Bruno Kahn]], \emph{Fonctions z\^e{}ta et $L$ de vari\'e{}t\'e{}s et de motifs}, \href{http://arxiv.org/abs/1512.09250v1}{arXiv:1512.09250}. \end{itemize} \hypertarget{categorical_approaches}{}\subsubsection*{{Categorical approaches}}\label{categorical_approaches} \begin{itemize}% \item [[Michael Larsen|M. Larsen]], [[Valery Lunts|V. A. Lunts]], \emph{Motivic measures and stable birational geometry}, Mosc. Math. J. \textbf{3}, 1 (2003) 85--95; \emph{Rationality criteria for motivic zeta functions}, Compos. Math. \textbf{140}:6 (2004) 1537--1560 \item [[Vladimir Guletskii]], \emph{Zeta functions in triangulated categories}, Mathematical Notes \textbf{87}, 3 (2010) 369--381, \href{http://arxiv.org/abs/math/0605040}{math/0605040} \item [[Maxim Kontsevich|M. Kontsevich]], \emph{Notes on motives in finite characteristics}, \href{http://arxiv.org/abs/math.AG/0702206}{math.AG/0702206} \item [[John Baez]], \emph{[[johnbaez:Zeta functions]]} \item [[Sergey Galkin]], [[Evgeny Shinder]], \emph{On a zeta-function of a dg-category}, \href{http://arxiv.org/abs/1506.05831}{arXiv:1506.05831}. \end{itemize} [[!redirects zeta functions]] \end{document}