\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{zeta function of an elliptic differential operator} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_zeta_function}{The zeta function}\dotfill \pageref*{the_zeta_function} \linebreak \noindent\hyperlink{FunctionalDeterminant}{Functional determinant and zeta-function regularization}\dotfill \pageref*{FunctionalDeterminant} \linebreak \noindent\hyperlink{AnalogyWithNumberTheoreticZetaFunctions}{Relation to partition functions and number-theoretic zeta/theta functions}\dotfill \pageref*{AnalogyWithNumberTheoreticZetaFunctions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_laplace_operator_on_complex_torus_and_dedekind_eta_function}{Of Laplace operator on complex torus and Dedekind eta function}\dotfill \pageref*{of_laplace_operator_on_complex_torus_and_dedekind_eta_function} \linebreak \noindent\hyperlink{analytic_torsion}{Analytic torsion}\dotfill \pageref*{analytic_torsion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{zeta_function_regularization}{Zeta function regularization}\dotfill \pageref*{zeta_function_regularization} \linebreak \noindent\hyperlink{functional_determinant}{Functional determinant}\dotfill \pageref*{functional_determinant} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a suitable [[linear operator]] $H$ (say on [[section]] of a [[line bundle]] over a [[Riemann surface]]), its \emph{zeta function} is the [[analytic continuation]] of the [[trace]] \begin{displaymath} ze \zeta_H(s) \coloneqq Tr(H^{-s}) \end{displaymath} of the $-s$ power of $H$, which, if $H$ is suitably self-adjoint, is the [[sum]] of the $-s$-powers of all its [[eigenvalues]], as a function of $s$. This is analogous to the \emph{[[Riemann zeta function]]} and the [[Dedekind zeta function]] (or would be if there were something like a [[Laplace operator]] on [[Spec(Z)]] or more generally on an [[arithmetic curve]], see at \emph{[[function field analogy]]}). The exponential of the derivative of the zeta function at $n = 0$ also encodes the [[functional determinant]] of $H$, a [[regularization (physics)|regularized]] version (``[[zeta function regularization]]'') of the naive and generally ill-defined product of all eigenvalues. As such, zeta functions play a central role in [[quantum field theory]]. Generally, the values of $\zeta_H(s)$ of interest in [[physics]] (when regarding $H$ as a [[Hamilton operator]]) are those for (low) integral $s$. These are just the \emph{[[special values of L-functions]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{the_zeta_function}{}\subsubsection*{{The zeta function}}\label{the_zeta_function} Given an [[elliptic differential operator]] with positive lower bound $c$, write $H$ for its [[self-adjoint extension]] and write \begin{displaymath} 0 \lt \lambda_1 \leq \lambda_2 \leq \cdots \end{displaymath} for its [[eigenvalues]]. \begin{defn} \label{ZetaBySeries}\hypertarget{ZetaBySeries}{} The \emph{zeta function} of $H$ is the [[holomorphic function]] defined by the [[series]] \begin{displaymath} \begin{aligned} \zeta_H(s) & \coloneqq tr( H^{-s} ) \\ & \coloneqq \underoverset{n = 1}{\infty}{\sum} \frac{1}{(\lambda_n)^s} \end{aligned} \,. \end{displaymath} where this [[convergence|converges]] and then extended by [[analytic continuation]]. \end{defn} (e.g. (\hyperlink{DuistermaatGuillemin75}{Duistermaat-Guillemin 75 (2.13)}, \hyperlink{BerlineGetzlerVergne04}{Berline-Getzler-Vergne 04, section 9.6} ) ). \hypertarget{FunctionalDeterminant}{}\subsubsection*{{Functional determinant and zeta-function regularization}}\label{FunctionalDeterminant} Notice that the first [[derivative]] $\zeta^\prime_H$ of this zeta function is, where the original series converges, given by \begin{displaymath} \zeta_H^\prime(s) = \sum_{n = 1}^\infty \frac{- \ln \lambda_n}{ (\lambda_n)^s} \,. \end{displaymath} Therefore one says (\hyperlink{RaySinger71}{Ray-Singer 71}) that the \emph{[[functional determinant]]} of $H$ is the exponential of the derivative of zeta function of $H$ at 0: \begin{displaymath} det_{reg} H \coloneqq \exp(- \zeta_H^\prime(0)) \,. \end{displaymath} Via the [[analytic continuation]] involved in defining $\zeta_H(0)$ in the first place, this may be thought of as a \emph{[[regularization (physics)|regularization]]} of the ill-defined naive definition ``$\prod_n \lambda_n$'' of the [[determinant]] of $H$. As such functional determinants often appear in [[quantum field theory]] as what is called \emph{[[zeta function regularization]]}. Conversely, the [[logarithm]] \begin{displaymath} Z \coloneqq - \frac{1}{2}\zeta_H^\prime(0) = \tfrac{1}{2} log\,det_{reg} H \end{displaymath} is what is called the \emph{[[vacuum energy]]} in [[quantum field theory]] (for $H^{-1}$ the [[Feynman propagator]]). If $H = D^2$ has a square root $D$ (a [[Dirac operator]]-type square root as in [[supersymmetric quantum mechanics]]) then under some conditions on the growth of the eigenvalues, then the functional determinant may also be expressed in terms of the [[eta function]] of $D$ as \begin{displaymath} det H = det (D^2) = \exp( \frac{\partial}{\partial s}\frac{\partial}{\partial c} \eta_{D}(0)) \,. \end{displaymath} See at \emph{\href{eta+invariant#RelationToTheZetaFunction}{eta invariant -- Relation to zeta function}} for more on this. \hypertarget{AnalogyWithNumberTheoreticZetaFunctions}{}\subsubsection*{{Relation to partition functions and number-theoretic zeta/theta functions}}\label{AnalogyWithNumberTheoreticZetaFunctions} By basic [[integration]] identities we have that \begin{prop} \label{IntegralKernelExpression}\hypertarget{IntegralKernelExpression}{} The series expression in def. \ref{ZetaBySeries} is equal to the [[Mellin transform]] of the [[partition function]] \begin{displaymath} \zeta_H(s) = \int_{(0,\infty)} t^{s-1} \left( \underset{\lambda_k \neq 0}{\sum} \exp(-t \lambda_k) \right) d t \,. \end{displaymath} \end{prop} (see e.g. \hyperlink{QuineHeydariSong93}{Quine-Heydari-Song 93 (8)}, \hyperlink{Richardson}{Richardson, pages 8-9}, \hyperlink{BCEMZ03}{BCEMZ 03, section A.2}, \hyperlink{ConnesMarcolli06}{Connes-Marcolli 06, theorem 13.11}). \begin{remark} \label{}\hypertarget{}{} If one thinks of the operation $H$ as a [[Hamiltonian]] of a [[quantum mechanical system]], then the term \begin{displaymath} Tr(\exp(-\beta H)) \coloneqq \underset{\lambda_k \neq 0}{\sum} \exp(-\beta \lambda_k) + 1 \end{displaymath} is the \emph{[[partition function]]} of this system. Accordingly, prop. \ref{IntegralKernelExpression} says that the zeta function of $H$ is obtained from its partition function by \begin{displaymath} \zeta_H(s) = \int_{(0,\infty)} \beta^{s-1} \; \left(Tr(\exp(-\beta H)) - 1 \right) \; d \beta \,. \end{displaymath} \end{remark} Further, by a change of integration variable $t\coloneqq x^2$ in the expression in prop. \ref{IntegralKernelExpression} one obtains \begin{prop} \label{IntegralKernelExpressionInSquares}\hypertarget{IntegralKernelExpressionInSquares}{} The series expression in def. \ref{ZetaBySeries} is equal to \begin{displaymath} \begin{aligned} \zeta_H(s) & = 2 \int_{(0,\infty)} x^{2s-1} \left( \underset{\lambda_k \neq 0}{\sum} \exp(- x^2 \lambda_k) \right) d x \end{aligned} \,. \end{displaymath} In particular if $H = D^2$ is the square of a [[Dirac operator]]/[[supersymmetric quantum mechanics]]-type square root operator $D$ with [[eigenvalues]] $\pm \alpha_k$,then $\lambda_k = \alpha_k^2$ and hence in this case the series is \begin{displaymath} \begin{aligned} \zeta_H(s) & = 2 \int_{(0,\infty)} x^{2s-1} \left( \underset{\alpha_k \neq 0}{\sum} \exp(- (x \alpha_k)^2) \right) d x \end{aligned} \,. \end{displaymath} \end{prop} By comparison one observes: \begin{remark} \label{}\hypertarget{}{} The integral expression in prop. \ref{IntegralKernelExpressionInSquares} is analogous to the expression of [[zeta functions]] in [[number theory]]/[[arithmetic geometry]] as integrals of a [[theta function]] (for instance discussed \href{Riemann%20zeta%20function#RelationToThetaFunctions}{here} for the [[Riemann zeta function]]) \begin{displaymath} \hat\zeta_f(2 s) = \int_{(0,\infty)} (\theta(x^2) - 1) x^{2s-1} d x \,. \end{displaymath} Under this analogy the [[theta function]] in the case of the differential operator $H$ is \begin{displaymath} \theta_H(x) \coloneqq \underset{\lambda_k \neq 0}{\sum} \exp(- x \lambda_l) \,. \end{displaymath} This is formally the same definition as that of adelic theta functions (e.g.\href{Iwasawa-Tate%20theory#Garrett11}{Garrett 11, section 1.8}) \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[determinant line bundle]] of the [[functional determinant]] of the [[Dirac operator]] on a [[complex torus]] is a complex-analytic [[theta function]] as above, quotiented by the [[Dedekind eta function]]. Early references explaining this include \hyperlink{AlvaresGaumeMooreVafa86}{Alvarez-Gaum\'e{} \& Moore \& Vafa 86}, \hyperlink{AlvaresGaumeBostMooreNelsonVafa87}{Alvarez-Gaum\'e{} \& Bost \& Moore \& Nelson \& Vafa 87}. In a bigger perspective, this relation plays a central role in the general discussion of [[self-dual higher gauge theory]] (\href{self-dual%20higher%20gauge%20theory#Witten96}{Witten 96}). \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_laplace_operator_on_complex_torus_and_dedekind_eta_function}{}\subsubsection*{{Of Laplace operator on complex torus and Dedekind eta function}}\label{of_laplace_operator_on_complex_torus_and_dedekind_eta_function} For $\mathbb{C}/(\mathbb{Z}\oplus \tau \mathbb{Z})$ a [[complex torus]] (complex [[elliptic curve]]) equipped with its standard flat [[Riemannian metric]], then the [[zeta function of an elliptic differential operator|zeta function]] of the corresponding [[Laplace operator]] $\Delta$ is \begin{displaymath} \zeta_{\Delta} = (2\pi)^{-2 s} E(s) \coloneqq (2\pi)^{-2 s} \underset{(k,l)\in \mathbb{Z}\times\mathbb{Z}-(0,0)}{\sum} \frac{1}{{\vert k +\tau l\vert}^{2s}} \,. \end{displaymath} The corresponding [[functional determinant]] is \begin{displaymath} \exp( E^\prime_{\Delta}(0) ) = (Im \tau)^2 {\vert \eta(\tau)\vert}^4 \,, \end{displaymath} where $\eta$ is the [[Dedekind eta function]]. (recalled e.g. in \hyperlink{Todorov03}{Todorov 03, page 3}) For more see also at \emph{[[zeta function of a Riemann surface]]}. \hypertarget{analytic_torsion}{}\subsubsection*{{Analytic torsion}}\label{analytic_torsion} The functional determinant of a [[Laplace operator]] of a [[Riemannian manifold]] acting on [[differential n-forms]] is up to a sign in the exponent a factor in what is called the \emph{[[analytic torsion]]} of the manifold. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[partition function]] \end{itemize} [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} An early reference is \begin{itemize}% \item [[Hans Duistermaat]], [[Victor Guillemin]], \emph{The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics},Inventiones mathematicae (1975) Volume: 29, page 39-80 (\href{https://eudml.org/doc/142329}{EuDML}) \end{itemize} (see also at \emph{[[Duistermaat-Guillemin trace formula]]}) Textbook accounts include \begin{itemize}% \item [[Nicole Berline]], [[Ezra Getzler]], [[Michèle Vergne]], section 9.6 of \emph{Heat Kernels and Dirac Operators} \end{itemize} Review includes \begin{itemize}% \item [[Ken Richardson]], section 3 of \emph{Introduction to the Eta invariant} (\href{http://faculty.tcu.edu/richardson/Seminars/etaInvariant.pdf}{pdf}) \item J. R. Quine, S. H. Heydari, R. Y. Song, \emph{Zeta regularized products}, Transactions of the AMS volume 338, number 1, 1993 ([[QuineZetaRegularization.pdf:file]]) \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Functional_determinant#Zeta_function_version}{Functional determinant -- Zeta function version}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Zeta_function_regularization}{Zeta function regularization}} \item [[Alain Connes]], [[Matilde Marcolli]], \emph{A walk in the noncommutative garden} (\href{http://arxiv.org/abs/math/0601054}{arXiv:0601054}) \end{itemize} \hypertarget{zeta_function_regularization}{}\subsubsection*{{Zeta function regularization}}\label{zeta_function_regularization} \begin{itemize}% \item [[Eugene Speer]], \emph{On the structure of Analytic Renormalization}, Comm. math. Phys. 23, 23-36 (1971) (\href{http://projecteuclid.org/euclid.cmp/1103857549}{Euclid}) \item A. Bytsenko, G. Cognola, [[Emilio Elizalde]], [[Valter Moretti]], S. Zerbini, section 2 of \emph{Analytic Aspects of Quantum Fields}, World Scientific Publishing, 2003, ISBN 981-238-364-6 \end{itemize} \hypertarget{functional_determinant}{}\subsubsection*{{Functional determinant}}\label{functional_determinant} The definition of a \emph{[[functional determinant]]} via the exponential of the derivative of the zeta function at 0 originates in \begin{itemize}% \item D. Ray, [[Isadore Singer]], \emph{R-torsion and the Laplacian on Riemannian manifolds}, Advances in Math. 7: 145--210, (1971) doi:10.1016/0001-8708(71)90045-4, MR 0295381 \end{itemize} Discussion in the special case of [[2d CFT]] ([[worldsheet]] [[string theory]]) is in \begin{itemize}% \item [[Luis Alvarez-Gaumé]], [[Gregory Moore]], [[Cumrun Vafa]], \emph{Theta functions, modular invariance, and strings}, Communications in Mathematical Physics Volume 106, Number 1 (1986), 1-4 (\href{http://projecteuclid.org/euclid.cmp/1104115581}{Euclid}) \item [[Luis Alvarez-Gaumé]], [[Jean-Benoit Bost]], [[Gregory Moore]], Philip Nelson, [[Cumrun Vafa]], \emph{Bosonization on higher genus Riemann surfaces}, Communications in Mathematical Physics, Volume 112, Number 3 (1987), 503-552 (\href{http://projecteuclid.org/euclid.cmp/1104159982}{Euclid}) \item [[Andrey Todorov]], \emph{The analogue of the Dedekind eta function for CY threefolds}, 2003 \href{http://www.ma.huji.ac.il/conf/crelle.pdf}{pdf} \end{itemize} [[!redirects zeta functions of elliptic differential operators]] \end{document}