\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{zeta function regularization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{analytic_regularization_of_propagators}{Analytic regularization of propagators}\dotfill \pageref*{analytic_regularization_of_propagators} \linebreak \noindent\hyperlink{functional_determinants}{Functional determinants}\dotfill \pageref*{functional_determinants} \linebreak \noindent\hyperlink{higher_amplitudes}{Higher amplitudes}\dotfill \pageref*{higher_amplitudes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_laplace_operator_on_complex_torus_and_dedekind_eta_function}{Of Laplace operator on complex torus and Dedekind eta function}\dotfill \pageref*{of_laplace_operator_on_complex_torus_and_dedekind_eta_function} \linebreak \noindent\hyperlink{zeta_regularization_for_divergent_integrals}{Zeta regularization for divergent integrals}\dotfill \pageref*{zeta_regularization_for_divergent_integrals} \linebreak \noindent\hyperlink{analytic_torsion}{Analytic torsion}\dotfill \pageref*{analytic_torsion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[regularization (physics)|regularization in physics]], \emph{zeta function regularization} is a method/prescription for extracing finite values for [[traces]] of powers of [[Laplace operators]]/[[Dirac operators]] by \begin{enumerate}% \item considering $s$-powers for all values of $s$ in the [[complex plane]] where the naive trace does make sense and then \item using [[analytic continuation]] to obtain the desired [[special values of L-functions|special value]] at $s = 1$ -- as for [[zeta functions]]. \end{enumerate} \hypertarget{analytic_regularization_of_propagators}{}\subsubsection*{{Analytic regularization of propagators}}\label{analytic_regularization_of_propagators} One speaks of \emph{analytic regularization} (\hyperlink{Speer71}{Speer 71}) or \emph{zeta function regularization} (e.g. \hyperlink{M99}{M 99}, \hyperlink{BCEMZ03}{BCEMZ 03, section 2}) if a [[Feynman propagator]]/[[Green's function]] for a [[boson|bosonic]] [[field (physics)|field]], which is naively given by the expression ``$Tr\left(\frac{1}{H}\right)$'' (for $H$ the given [[wave operator]]/[[Laplace operator]]) is made well defined by interpreting it as the [[principal value]] of the [[special values of L-functions|special value]] at $s= 1$ \begin{displaymath} Tr_{reg} \left(\frac{1}{H}\right) \coloneqq pv\, \zeta_H(1) \end{displaymath} of the [[zeta function of an elliptic differential operator|zeta function]] which is given by the expression \begin{displaymath} \zeta_H(s) \coloneqq Tr\left( \frac{1}{H} \right)^s \end{displaymath} for all values of $s \in \mathbb{C}$ for which the right hand side exists, and is defined by [[analytic continuation]] elsewhere. Analogously the zeta function regularization of the [[Dirac propagator]] for a [[fermion]] [[field (physics)|field]] with [[Dirac operator]] $D$ is defined by \begin{displaymath} Tr_{reg} \left(\frac{D}{D^2} \right) \coloneqq pv\, \eta_D(1) \end{displaymath} where $\eta$ is the [[eta function]] of $D$. \hypertarget{functional_determinants}{}\subsubsection*{{Functional determinants}}\label{functional_determinants} Notice that the first [[derivative]] $\zeta^\prime_H$ of this [[zeta function of an elliptic differential operator|zeta function]] is, where the original series converges, given by \begin{displaymath} \zeta_H^\prime(s) = \sum_{n = 1}^\infty \frac{- \ln \lambda_n}{ (\lambda_n)^s} \,. \end{displaymath} Therefore the \emph{[[functional determinant]]} of $H$ (\hyperlink{RaySinger71}{Ray-Singer 71}) is the exponential of the zeta function of $H$ at 0: \begin{displaymath} Det_{reg} H \coloneqq \exp(- \zeta_H^\prime(0)) \,. \end{displaymath} (see also \hyperlink{BCEMZ03}{BCEMZ 03, section 2.3}) Via the [[analytic continuation]] involved in defining $\zeta_H(0)$ in the first place, this may be thought of as a \emph{[[regularization (physics)|regularization]]} of the ill-defined naive definition ``$\prod_n \lambda_n$'' of the [[determinant]] of $H$. As such functional determinants often appear in [[quantum field theory]] as what is called \emph{[[zeta function regularization]]}. \hypertarget{higher_amplitudes}{}\subsubsection*{{Higher amplitudes}}\label{higher_amplitudes} Accordingly, more general [[scattering amplitudes]] are controled by [[multiple zeta functions]] (\ldots{}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_laplace_operator_on_complex_torus_and_dedekind_eta_function}{}\subsubsection*{{Of Laplace operator on complex torus and Dedekind eta function}}\label{of_laplace_operator_on_complex_torus_and_dedekind_eta_function} For $\mathbb{C}/(\mathbb{Z}\oplus \tau \mathbb{Z})$ a [[complex torus]] (complex [[elliptic curve]]) equipped with its standard flat [[Riemannian metric]], then the [[zeta function of an elliptic differential operator|zeta function]] of the corresponding [[Laplace operator]] $\Delta$ is \begin{displaymath} \zeta_{\Delta} = (2\pi)^{-2 s} E(s) \coloneqq (2\pi)^{-2 s} \underset{(k,l)\in \mathbb{Z}\times\mathbb{Z}-(0,0)}{\sum} \frac{1}{{\vert k +\tau l\vert}^{2s}} \,. \end{displaymath} The corresponding [[functional determinant]] is \begin{displaymath} \exp( E^\prime_{\Delta}(0) ) = (Im \tau)^2 {\vert \eta(\tau)\vert}^4 \,, \end{displaymath} where $\eta$ is the [[Dedekind eta function]]. (recalled e.g. in \hyperlink{Todorov03}{Todorov 03, page 3}) \hypertarget{zeta_regularization_for_divergent_integrals}{}\subsubsection*{{Zeta regularization for divergent integrals}}\label{zeta_regularization_for_divergent_integrals} the zeta regularizatio method can be extended to include also a regularization for the divergent integrals $\int_{a}^{\infty}x^{m}dx$ which appears in QFT, this is made by means of the identity \begin{displaymath} \begin{array}{l} \int_{a}^{\infty }x^{m-s} dx =\frac{m-s}{2} \int_{a}^{\infty }x^{m-1-s} dx +\zeta (s-m)-\sum_{i=1}^{a}i^{m-s} +a^{m-s} \\ -\sum_{r=1}^{\infty }\frac{B_{2r} \Gamma (m-s+1)}{(2r)!\Gamma (m-2r+2-s)} (m-2r+1-s)\int_{a}^{\infty }x^{m-2r-s} dx \end{array} \end{displaymath} for the case of $m=-1$ although the harmonic series has a pole we can regularize by the 2 possibilities $\sum_{n=0}^{\infty} \frac{1}{n+a} = -\Psi (a)$ or $\sum_{n=0}^{\infty} \frac{1}{n+a} = -\Psi (a)+log(a)$ in particular \newline $\sum_{n=1}^{\infty} \frac{1}{n} = \gamma$ Euler-Mascheroni constant, and $\Psi(a)= -\frac{\Gamma '(a)}{\Gamma (a)}$ So within this reuglarization there wouldn't be any UV ultraviolet divergence \hypertarget{analytic_torsion}{}\subsubsection*{{Analytic torsion}}\label{analytic_torsion} The functional determinant of a [[Laplace operator]] of a [[Riemannian manifold]] acting on [[differential n-forms]] is up to a sign in the exponent a factor in what is called the \emph{[[analytic torsion]]} of the manifold. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[Eugene Speer]], \emph{On the structure of Analytic Renormalization}, Comm. Math. Phys. 23, 23-36 (1971) (\href{http://projecteuclid.org/euclid.cmp/1103857549}{Euclid}) \item D. Ray, [[Isadore Singer]], \emph{R-torsion and the Laplacian on Riemannian manifolds}, Advances in Math. 7: 145--210, (1971) doi:10.1016/0001-8708(71)90045-4, MR 0295381 \end{itemize} Modern accounts and reviews include \begin{itemize}% \item [[Daniel Freed]], page 8 of \emph{On determinant line bundles}, Math. aspects of [[string theory]], ed. S. T. Yau, World Sci. Publ. 1987, (revised \href{http://www.math.utexas.edu/~dafr/Index/determinants.pdf}{pdf}, \href{http://arxiv.org/abs/dg-ga/9505002}{dg-ga/9505002}) \item [[Emilio Elizalde]], \emph{Ten Physical Applications of Spectral Zeta Functions} (1995) \item [[Valter Moretti]], \emph{Local z-function techniques vs point-splitting procedures: a few rigorous results} Commun. Math. Phys. 201, 327 (1999). \item A. Bytsenko, G. Cognola, [[Emilio Elizalde]], [[Valter Moretti]], S. Zerbini, section 2 of \emph{Analytic Aspects of Quantum Fields}, World Scientific Publishing, 2003, ISBN 981-238-364-6 \item [[Nicolas Robles]], \emph{Zeta function regularization}, 2009 ([[RoblesZetaRegularization.pdf:file]]) \end{itemize} See also \begin{itemize}% \item [[Andrey Todorov]], \emph{The analogue of the Dedekind eta function for CY threefolds}, 2003 \href{http://www.ma.huji.ac.il/conf/crelle.pdf}{pdf} \end{itemize} [[!redirects zeta function regularizations]] [[!redirects functional determinant]] [[!redirects functional determinants]] [[!redirects zeta-function regularization]] [[!redirects zeta-function regularizations]] \end{document}