#Contents# * table of contents {:toc} ## Idea A _dmonoid_ is a "directed" monoid. ## Definition A (left) **dmonoid** is a preorder $(X,\le)$ equipped with: 1. a binary operation $\cdot$ (called _multiplication_) which is monotonic in both arguments: \[ \label{mopsetbifunctor} \array{ \arrayopts{\rowlines{solid}} a_1 \le a_2 \quad b_1 \le b_2 \\ a_1\cdot b_1 \le a_2\cdot b_2 } \] and which satisfies the **semi-associative law**: \[ \label{mopsetassoc} (a \cdot b)\cdot c \le a \cdot (b\cdot c) \] for all $a,b,c \in X$; and 2. an element $I \in X$ (called _unit_) satisfying left and right **unit laws**: \[ \label{mopsetunit} I \cdot a \le a \] \[ \label{mopsetrunit} a \le a \cdot I \] for all $a \in X$. ## Related concepts * [[imploid]] ## References * {#Street2013} Ross Street. Skew-closed categories. _Journal of Pure and Applied Algebra_ 217(6) (June 2013), [arXiv:1205.6522](https://arxiv.org/abs/1205.6522) * {#Szlachanyi2012} Kornel Szlachanyi. Skew-monoidal categories and bialgebroids. [arXiv:1201.4981](https://arxiv.org/abs/1201.4981) * {#TamariPhD} Dov Tamari. _Monoïdes préordonnés et chaînes de Malcev_. Thèse, Université de Paris, 1951. * {#Tamari1964} Dov Tamari. Sur quelques problèmes d'associativité. _Ann. sci. de Univ. de Clermont-Ferrand 2, Sér. Math._, vol. 24, pp. 91-107, 1964. [url](http://www.numdam.org/item/ASCFM_1964__24_3_91_0) [[!redirects dmonoids]]