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Abstract

While fractional quantum Hall systems provide the best experimental evidence yet of (abelian) anyons
plausibly necessary for future fault-tolerant quantum computation, like all strongly-coupled quantum systems
their physics is not deeply understood. However, generally a promising approach is to (holographically) realize
such systems on branes in string/M-theory; and specifically an old argument by Hellerman & Susskind gives a
sketch of fractional quantum Hall states arising via discrete light cone quantization of M5/M9-brane intersections.

Here we present a rigorous derivation of abelian anyon quantum states on M5⊥MO9-branes (“open M5-
branes”) on the discrete light cone, after globally completing the traditional local field content on the M5-
worldvolume via a flux-quantization law compatible with the ambient 11d supergravity, specifically taken to be
in unstable co-Homotopy cohomology (“Hypothesis H”).

The main step in the proof uses a theorem of Okuyama to identify co-Homotopy moduli spaces with con-
figuration spaces of strings with charged endpoints, and identifies their loop spaces with cobordism of framed
links that, under topological light cone quantization, turn out to be identified with the regularized Wilson loops
of abelian Chern-Simons theory.
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1 Introduction

Strongly-coupled quantum systems. The remarkable properties of quantum materials [KM17] on which rest
the hopes notably of fault-tolerant quantum computation [Sau17][MySS24] are due to these quantum systems
being strongly coupled. This requires their constituents to be strongly correlated [Fu12][FGSS20], hence that their
quantum states not be small perturbations of the vacuum. Traditional and well-established perturbation- and
mean-field-theory does not apply to such systems [BaSh10], while the exploration of the realm of non-perturbative
quantum theory is still comparatively in its infancy [FS10][Str13]. However, a promising general approach is via
“geometric engineering” [GK99] of strongly-coupled quantum systems on worldvolumes of branes in string/M-theory
[Du96][Du99a]; or dually via the holographic (cf. [AG+00][Nat15]) imprint that these branes leave in the ambient
field of (super-)gravity (applied to quantum materials since [HKSS07], review in [Pi14][ZLSS15][Na17][HLS18]).

Anyonic topological order. Concretely, the holy grail of topological quantum matter [Sta20] is the understanding
and realization of anyonic topological order [ZCZW19, §III][SS23c], where the adiabatic movement of configurations
of defects (e.g. vortices in a quantum liquid) induces quantum state monodromies that are topologically invariant
(cf. pointers in [MySS24, §3]) and as such shielded from the ubiquitous noise notoriously jeopardizing the coherence
of quantum circuits [Sau17]. The best experimental evidence for anyons comes (as predicted [Ha84][ASW84][FH21])
from fractional quantum Hall (FQH) systems [Sto99][Gi04][Fu12, §14.2][Sta20, §6.2.1] where a planar electronic
quantum liquid is placed in a strong transversal magnetic field at extremely low temperature. The observed quantum
Hall anyons [NLGM20][Gl+24] are abelian (non-abelian ones “seem to be realized in rather rare conditions” [Ste20]),
hence do not by themselves implement a universal set of quantum gates, but still go at least a long way towards
useful topological quantum computation [Pa06][Ll02][Wo10][WP11].

Models of the FQH effect. While good phenomenological models for the FQH effect have been developed (cf.
[Ja14]), a microscopic understanding remains elusive (cf. [DS20, §1][Jac21, §1]). At the same time, it is remarkable
that the FQH effect is universal (e.g., [Gi04, p. 133]) in that it is seen across diverse materials and independently
of their impurities. This suggests that brane models are fundamentally worthwhile and should see the FQH effect
fairly generically. In this respect the observation of [HS01] is noteworthy: These authors sketched an argument that
the worldvolume physics of flat M5-branes carrying a constant H3-flux density (as in [GSS24b, Ex. 3.14]) generally
exhibits FQH at unit filling factor, and at fractional filling factor 1/(k+1) when placed near k M9-branes (namely
when the corresponding D4-branes are placed near k D8-branes, cf. e.g. [Ha12]). While we will use rather different
methods here, with precise definitions and rigorous proofs, our brane setup (§2) is similar to and the conclusions are
compatible with [HS01]: We consider flat M5-branes intersecting MO9-planes (known as “open M5-branes”) while
carrying constant H3-flux density, and we derive abelian anyon quantum states on their worldvolume (cf. [2]). The
novel ingredient that makes this work is a completion of the worldvolume field content by a flux quantization law.

The need for flux quantization. Our starting point here is the observation that previous discussions of brane
physics have tended to ignore the key non-perturbative effect already in the classical theory, namely the “flux
quantization” (see [SS24c][SS24a], building on e.g. [Al85][Fr00][Sa10]) of the (higher) worldvolume gauge field. In
this context, the local field content traditionally considered on a single coordinate chart is globalized to include
topological solitonic field configurations classified by some generalized cohomology theory (this in generalization
of the familiar case of Dirac charge quantization of ordinary electromagnetism in ordinary integral cohomology
(e.g. [Al85]), which famously implies the solitonic fields to be Dirac monopoles and Abrikosov vortices, reviewed
in [SS24c, §2.1]). Especially for M5-branes, the flux quantization of their H3-flux is more subtle than may have
been commonly appreciated [SS24c, §4.3][GSS24b]. This is because it is twisted by the (G4, G7)-flux density of the
ambient 11d supergravity background [GSS24b, (19)-(21)] that itself famously satisfies a non-linear Bianchi identity
(review in [MiSc06, §3.1.3][GSS24a]) and as such has ([SS24c, §3.2][FSS23]) admissible flux-quantization only in
non-abelian (i.e., unstable) generalized cohomology theories ([To02, Def. 6.0.6][Lu14, Def. 6][FSS23, §2]), which
have not yet received wide attention yet. Hence, completing the theory by flux quantization may be expected
to reveal previously unrecognized (explanations for) physical effects in the quantum physics on M5-branes and
therefore, by extension, in quantum materials.

Cohomotopical charges on M5-branes. The simplest (in a sense) flux quantization law which is admissible for
M5-branes in 11d supergravity turns out ([FSS20b, §3.7][FSS21a][GSS24b, (22)]) to be a twisted form of unstable
co-Homotopy cohomology theory (classically considered by [Bo36][Pon38][Sp49], being the historical origin of the
seminal Pontrjagin-Thom theorem, cf. [SS23a, §2.2, 3.2]). This means that the sectors of topological charges are
identified with suitable homotopy classes of continuous maps from the spacetime/worldvolume domain to higher
dimensional spheres. The hypothesis that this is the “correct” flux-quantization law to be used for 11d supergravity
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with M5-branes (“Hypothesis H”, [FSS20b][GS21][SS23a], following [Sa13, §2.5]) is justified by theorems matching
its implications to a list of common expectations about “M-theory” (reviewed in [SS24c, §4]; more in detail, here
we use Z2-equivariant “Real” Cohomotopy [SS20b, p. 100][HSS19] appropriate for M-branes at MO9-orientifold
planes [SS20a, §4]).

However, one may also turn this around and regard the cohomotopically flux-quantized M5-brane as the defi-
nition of a model for topological effects in strongly coupled quantum systems and investigate its predictions (as in
[FSS21a][FSS21c]). This is what we do here regarding the emergence of abelian anyon quantum states, following
[GSS24b].

The article is organized as follows:

– In §2 we introduce the configurations of M5-branes and their worldvolume solitons to be considered and
briefly review the relevant aspects of their flux-quantization in co-Homotopy.

– In §3 we identify the resulting transverse position moduli of cohomotopically flux-quantized solitons with the
configuration space of points in the plane and give a knot-theoretic description of its fundamental group in
terms of cobordism classes of framed links, using a theorem by Okuyama [Ok05].
Our main Theorem 3.18 here is pure algebraic-topology/knot-theory and as such seems to be new and may
be of interest in its own right (cf. Rem. 3.20).

– In §4 we put these pieces together and show that the topological soliton sector on holographic M5-branes
under consideration is controlled by (abelian) Chern-Simons quantum field theory.

– In §5 we conclude and provide some outlook, such as in view of topological quantum computation with anyons.

Acknowledgements. We thank Sadok Kallel and Shingo Okuyama for comments on the material in §3, following
the first preprint version of this article. In particular, Shingo Okuyama kindly informed us of the set of talk slides
[Ok18] where diagrams similar to our Figure 2 as well as the claim of a Hopf generator representative equivalent
to (27) already appear.

Last not least we thank Jack Morava for inspiring discussion and for pointing out the reference [MR23] which
has some tantalizing points of contact with the present work, such as one highlighted in Rem. 3.19 below.
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2 Brane configuration

Here we introduce the configurations of M5-branes and their worldvolume solitons to be considered (Figure 1), and
along the way we briefly review the relevant aspects of their flux-quantization in co-Homotopy, mostly recalling
from [GSS24b] and references given there.

Quantized charges on flat M5-Branes. In the special case of interest here, where the M5-brane worldvolume
and its ambient spacetime are flat, and the supergravity C-field is trivial, the flux quantization on the worldvolume
according to Hypothesis H is in plain (as opposed to twisted) 3-co-Homotopy [GSS24b, (141)]. This means [FSS23,
Ex. 2.7] that the global charge is encoded by a continuous map χ : Σ6 −! S3 from the worldvolume domain Σ6,

subject to the constraint that its “character” ch(χ) : Σ6 χ
−! S3 1

−! K(R, 3) — the coHomotopical analog of the
Chern character on K-theory, see [FSS23, Ex. 9.3], essentially being the pullback along χ of the volume form on
S3 [FSS20b, §3.7][FSS21a, §3] — coincides as an element of H3(Σ6;R) ≃ H3

dR(Σ
6) with the de Rham class of the

B-field flux density H3 on the worldvolume:

Total flux [H3] = ch(χ) R-rationalization
of total charge

i.e. the following
diagram commutes

π3(Σ)

∗ Ω3
dR(Σ

6) H3
dR(Σ

6)

ch

H3

χ

[−]

(1)

The complete field content is given by a homotopy-theoretic enhancement of the diagram on the right, whose filling
homotopy encodes how the flux density H3 is related to the global charge χ by local gauge potentials B2, see
[GSS24b, §4.1] and see [SS24c, §3.3] for background.

Here, we are making use of the fact [FSS23, §2] that the Eilenberg-MacLane space K(R, 3) is a classifying space
for ordinary real (de Rham) cohomology in analogy to how S3 is the classifying space for 3-co-Homotopy (see
[FSS23, §2]):

Ordinary cohomology H3
dR(Σ

6) ≃ π0Maps
(
Σ6, K(R, 3)

)
, π3(Σ6) := π0Maps

(
Σ6, S3

)
Co-Homotopy.

Flux-quantized soliton moduli on flat M5-branes. Just like homotopies between maps to K(Z, 3) represent
coboundaries in ordinary cohomology (cf. [FSS23, (2.3)]), homotopies between maps to S3 represent the topological
component of gauge transformations between flux-quantized B-field configurations. This means that (the path ∞-

groupoid of) the mapping space ππ3(Σ6) := Maps∗/(Σ6, S3) plays the role of the topological sector of the global
phase space BRST complex of the theory [SS24a]:

co-Homotopy
moduli space

ππ3(Σ) ≡ Maps∗/(Σ6, S3) Topological sector
of phase space

co-Homotopy
set

π3(Σ6) ≡ π0Maps∗/(Σ6, S3) Set of charges

(2)

The superscript indicates that we consider pointed maps, for any fixed basepoint in S3 and for the basepoint in the
worldvolume domain Σ6 taken to be the “point at infinity” at which charges of localized solitons in the B-field are
required to vanish ([SS23a, Rem. 2.3, Def. 3.16][SS23d, §A.2]).

For instance, consider the strong coupling regime the M5-brane is to be wrapped on the “decompactified” M-
theory circle (e.g. [To96, p. 4][Na17, §26.5]), which we may model as the 1-point compactification [SS23a, (17)]
S1
A := R1

{∞} of the real line by including its point at infinity. The moduli space becomes the based loop space of

the moduli on the remaining 5-dimensional worldvolume Σ5 of the corresponding D4-brane:

Maps∗/( Σ5 ∧ S1
A︸ ︷︷ ︸

Σ6

, S3) ≃ ΩMaps∗/(Σ5, S3) , (3)

where “∧” denotes the smash product of pointed spaces [SS23d, (28)]. Moreover, to inspect potentially anyonic
charges on the M5, we need to consider solitons of codimension=2 and hence take the D4 worldvolume domain to
be further factored as Σ5 ≡ R1,2

⊔{∞} ∧ R2
{∞} [SS24c, §2.2]. Here, the first factor is the soliton worldvolume (non-

compactified, hence with a disjoint point-at-infinity), and the second factor is its transverse space (whose included
point at infinity forces the charge to vanish at infinity and hence topologically stabilizes/localizes the solitons).
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The equivariant moduli at the MO9-plane. Finally, for modeling the rigid longitudinal wrapping of the topo-
logical H3-flux analogous to [HS01, (3.1)], we consider wrapping the brane on another circle factor S1

H := R1
{∞}

equipped with Z2-reflection action whose fixed locus is to be the MO9-plane of heterotic M-theory [HW96].
This being an orienti-fold means that its charges are to be measured in the “Real” version of co-Homotopy
[SS20a][HSS19][SS20b, Def. 5.28], hence that the moduli space (3) becomes that of pointed Z2-equivariant maps
to S3 equipped with reflection action on one of its coordinates:

Maps
∗/
Z2

(
R1,1

⊔{∞} ∧ R2
{∞} ∧ S1

H ∧ S1
A︸ ︷︷ ︸

Σ6

, S2 ∧ S1
sgn

)
≃ ΩMaps

∗/
Z2

(
R2

{∞} ∧ S1
H , S2 ∧ S1

sgn

)
. (4)

(Since after passing to the naive quotient space S1
H/Z2 ≃ [0, 1] this looks like M5-brane stretched along an interval,

M5-branes wrapped on S1
H have been called open M5-branes [BGT06, Fig. 3].)

Remarkably, the equivariant version [RS00, Thm. 2] of a classical theorem [Se73, Thm. 1] on configuration
spaces (see [Ka24][SS22]) identifies the resulting moduli space of solitons on the D4-worldvolume with the group
completion G of the configuration space Conf(R2 ×R1

sgn)
Z2 of equivariant points inside (i.e., Z2-fixed finite subsets

of) R2 × R1
sgn [GSS24b, (154)]:

Maps∗/
(
R2

{∞} ∧ S1
sgn, S

2 ∧ S1sgn
)

≃
whe

G
(
Conf

(
R2 × R1

sgn

)Z2
)

≃
whe

GConf(R3)×GConf(R2) . (5)

Here, the “group completion” G roughly means that the points — which here we are to think of as the soliton
worldvolumes localized in their transverse space inside the M5-worldvolume — are accompanied by corresponding
“anti-points” (their homotopy-inverses under disjoint union) — hence negatively-charged solitons — with which
they may undergo pair creation/annihilation. Interestingly, the precise statement, not widely appreciated before,
is that this group completion is given by configurations of strings with charged endpoints; this is discussed in §3.

In any case, it is clear that for such a configuration of points to be Z2-invariant as a subset, its elements either
are stuck at the O-plane in R2 × {0} ≃ R2 else they sit in the bulk R2 ×

(
R1 \ {0}

)
away from the O-plane and

then appear in mirror pairs determined by the element in, say, R2 × R1
>0 ≃ R3 — and this explains the second

equivalence in (5) [Xi06, (1.2), Thm. 4.1].

Note that the second factor on the right in (5) corresponds to the sector where the flux density H3 is wrapped
along the longitudinal direction S1

H so that only a transverse 2-form component remains, in a flux-quantized
refinement of the situation [HS01, (3.1)]. Since this remnant 2-form is the (electro-)magnetic flux density, we
understand the second factor GConf(R2) as that of solitons in an FQH-like system, and our task (in §4) is that
their quantum states are indeed anyonic.

Figure 1. The brane-diagram of the solitons on M5-
branes which carry anyonic quantum observables un-
der Hypothesis H. Here, from right to left:

(i) Both the M5 and its worldvolume soliton are
wrapped on the M/IIA circle S1

A in order to ad-
mit topological lightcone quantization (cf. §4).

(ii) The M5-brane itself is moreover wrapped over
the M/HET circle S1

H , but their worldvolume
solitons that we focus on are those that are stuck
at an O-plane, i.e. at one of the fixed points in
S1
H (the others escape into the HW bulk and thus

cannot be anyonic).

(iii) Due to a subtle effect of flux quantization in co-
Homotopy discussed in §3, these solitons have fi-
nite extension along one of their would-be trans-
verse directions inside the M5, as explained with
Figure 2

(iv) Otherwise, after the compactification, the soli-
tons look like strings that may move around
each other in the transverse plane (not unlike
Abrikosov vortex strings in a slab of type II su-
perconducting material, cf. [SS24c, §2.1]).

M5-worldvolume

soliton inside

R1,1× R1 × R1 × S1
H × S1

A

solitonic

vortex
string

finite
extension

due
flux

quantization

stuck
at
O
-plane

w
rapping

M
/IIA

circle

braiding happens in
this transv. plane︷ ︸︸ ︷

soliton

transverse plane

With these brane/soliton configurations specified, we proceed to a careful analysis of their moduli space.
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3 Configuration space

We recall that by GConf(R2) := ΩB⊔Conf(R2) ([Se73, Def. 2.2, Ex.(b)]) we denote the group-completion of the
configuration space of (un-labeled, un-ordered) points in the plane. Here we give a geometric description of its
fundamental group in terms of cobordism classes of framed links.

This section is purely mathematical and, as such, may be read and may be of interest independently of the
rest of the article. But readers who appreciate the physical “meaning” of GConf(R2) as the transverse position
moduli (5) of solitons on M5 ⊥ MO9 worldvolumes (according to §2) will readily recognize a vivid picture of
interaction-processes of solitonic branes appearing as strings in their näıve transverse space (cf. Figure 2).

Configuration spaces of solitonic charges. One might expect GConf(R2) to be the configuration space of
signed points in R2, where each point carries a charge in {±1}, with the topology of the configuration space such
that oppositely-charge points may undergo pair annihilation/creation. While this is the correct picture on the level
of connected components, it turns out not to correctly capture the homotopy type of this space, as observed long
ago in [McD75, p. 96].

However, it may not have come to be widely appreciated that something close is true: To get the correct moduli
space, the points (hence the worldvolume solitons) need to be regarded as being of finite thickness [CW81] at
least in one direction [Ok05], so that the points (which for us are the positions of worldvolume solitons in their
transversal space, cf. Fig. 1.) are resolved to “strings” carrying charges at their ends.

We now discuss this in more detail (culminating in Thm. 3.18 below).

Beware that the group-completed plain configuration spaces considered here are different from the configuration
spaces considered in [GS21]: The spaces there correspond to intersections of solitonic branes with codimension=1
branes (which induces an ordering of the points in the configuration, in contrast to the un-ordered configurations
considered here).

Group-completed configuration space of points. For general background on configuration spaces of points,
see [Wi20][Ka24][FH01].

Definition 3.1 (Plain configuration space of points [Se73, p. 215]). For n ∈ N, we write Conf(Rn) for the
topological space of finite subsets of (i.e. configurations of plain points in) Rn. This is a partial topological monoid
under the partial operation

Conf(Rn)× Conf(Rn) Conf(Rn)⊔ (6)

which is defined when the pair of configurations is disjoint, in which case it is given by their union. We write

GConf(Rn) := Ω
(
B⊔Conf(Rn)

)
(7)

for the topological group completion of this partial monoid, namely the based loop space of the topological real-
ization of its simplicial nerve.

(See [SS23d, §A.2] for the general topology of pointed spaces that we need here.)

Proposition 3.2 (Group-completed configurations as iterated loops [Se73, Thm. 1]). The cohomotopy
charge map (“scanning map”) constitutes a weak homotopy equivalence between the group completion of the config-
uration space of plain points in Rn (Def. 3.1) and the n-fold based loop space of the n-sphere:

GConf(Rn) ≃ ΩnSn. (8)

Definition 3.3 (Configuration space of charged open strings [Ok05, Def. 3.1-2]). For n ∈ N≥1, we write 1

ConfI(Rn) for the quotient by the equivalence relations indicated on the right of Figure 2 of the topological space
of disjoint unions of (half-)open/closed line segments in Rn parallel to the first coordinate axis, where in Figure 2 a
filled (black) circle indicates that the corresponding point is included in the interval, while an empty (white) circle
indicates that it is not.

Proposition 3.4 (Charged open strings as group-completion of plain points [Ok05, Thm. 1]). For n ∈ N≥1

there is a weak homotopy equivalence between the configuration space of charged open strings (Def. 3.3) and the
group completion of the plain configuration space of plain points (Def. 3.1):

ConfI(Rn) ≃ GConf(Rn) . (9)

1The space we denote ConfI(Rn) in Def. 3.3 would be denoted “In(S0)R” in the notation of [Ok05].
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Figure 2. Indicated in the left column is the equivalence re-
lation ([McD75, p. 94]) controlling the configuration space of
charged points in some Rn, where configurations involving a
positively and a negatively charged point are connected by a
continuous path to the corresponding configuration where both
of these points are absent (have mutually annihilated). This
configuration space is close to but not (weak-homotopy) equiv-
alent (by [McD75, p. 6]) to the group-completed configuration
space GConf(Rn).

Indicated in the right column are the analogous relations (from
[Ok05, Def. 3.1-2]) in the configuration space of charged
“strings”, where charged points are replaced by line segments
of finite length, parallel to a fixed coordinate axis, whose
endpoints are carrying charges. This configuration space is
(weak-homotopy) equivalent to the group-completed configu-
ration space GConf(R2) (by [Ok05, Thm. 1.1]).

(In both cases, the curvy lines indicate continuous paths in
these configuration spaces, here realizing the pair-annihilation
processes. Running along these paths in the opposite direction
reflects the corresponding pair-creation processes.)

Notice that in both cases the physical processes are grosso modo
the same — a pair of opposite charges mutually annihilate
—, the difference being only that on the right the process is
“smoothed out” in the familiar way in which string interactions
resolve singularities in particle interactions — only that here we
did not postulate this explicitly: it is derived by applying the
result of [Ok05] to the consequence (5) of Hypothesis H.

This is curious because it means that what naively looks like
(non-supersymmetric) solitonic 2-branes inside the M5-brane
worldvolume is resolved via flux quantization in co-Homotopy
to a kind of unstable open 3-branes (indicated by the broken
block in the brane diagram Figure 1) – possibly to be interpreted
as the decay products after supersymmetry breaking of the well-
known supersymmetric 3-brane inside the M5 [HLW98], under-
stood as the locus of 1/4BPS M5⊥M5-intersections [PT96].

(A discussion of stable such M5-defect 3-branes as anyons, we
had previously given in [SS23b][SS23c], based on the ordered
configuration spaces of points describing brane intersections ac-
cording to [SS22]. This ordering allows for non-abelian anyons,
as opposed to the abelian anyons found here, at the cost of more
complicated brane configurations.)

Configurations of charged

points strings

∅

∅

tracing out

worldlines worldsheets

∅

∅

Remark 3.5 (Charged strings reflecting Cohomotopy moduli). In summary, this identifies the n-Cohomotopy
moduli vanishing at infinity on Rn with the Okuyama configuration space of charged open strings in Rn:

Configuration space of
charged open strings

ConfI(Rn) ≃
(9)

GConf(Rn) ≃
(8)

ΩnSn

≃ Maps∗/
(
Rn

∪{∞}, S
n
)

≡ ππn
(
Rn

∪{∞}
)

Cohomotopy moduli
vanishing at infinity .

(10)

This implies:

Proposition 3.6 (Fundamental group of charged string configurations). The fundamental group of Okuyama’s
configuration space of charged open strings in the plane (Def. 3.3) is the group of integers:

π1

(
ConfI(R2)

)
≡ π0

(
Ω0 Conf

I(R2)
)

≃
(10)

π0

(
Ω3S2

)
≡ π3(S

2) ≃ Z . (11)

The generator on the right of (11) is well-known to be represented by the complex Hopf fibration hC : S3 ! S2.
Our goal is to understand the corresponding generator on the left, i.e., the unit-charged open string loop whose
composites and their reverses are deformation-equivalent to general charged open string loops.

A key observation for this identification is the following.
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Example 3.7 (Relations between charged open string worldsheets). Continuous deformations of paths of

charged open strings, i.e., continuous maps of the form [0, 1]
2 −! ConfI(Rn), subsume the following “moves” (and

their images under the exchange of positive and negative charges):

(12)

(13)

∅ (14)

Here the third move (14), a path of based loops, implies that the class of the annulus worldsheet in the fundamental
group of the configuration space vanishes:


= ∗ ∈ π1

(
ConfI(Rn)

)
.

Hence the annulus is not the generator of π1

(
ConfI(R2)

)
that we are after, and we need to look further:

Loops in Okuyama’s configuration space as framed oriented links. Our first observation now is that based
loops in Okuyama’s configuration space of charged open strings (Def. 3.3) may be identified with framed oriented
links (cf. Figure F). For a general discussion of framed links, see for instance [Oh1, p. 15][EHI20].

Definition 3.8 (Framed oriented links).

(i) A framed oriented link diagram is an immersion of k oriented circles
(
S1

)⊔k

, for k ∈ N, into the plane R2 with
isolated crossings at Euclidean distance > 1 from each other, at each of which one of the two crossing segments is
labeled as crossing over.

Here we demand in addition and without essential restriction of generality that no strictly horizontal segments
appear, hence that the restriction of a link diagram to any R1 ↪! R2 parallel to R × {0} consists of finitely many
points – this is used in (17) below.
(ii) Two framed oriented link diagrams are regarded as equivalent if they may be transformed into each other by
a sequence of isotopies (continuous paths in the space of framed link diagrams) and the three Reidemeister moves
shown in Figure R.
(iii) The framed oriented links are the corresponding equivalence classes of framed oriented link diagrams.
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Figure R – Reidemeister moves for framed link diagrams (e.g. [Oh1, Thm. 1.8]).

1st

2nd

3rd

Definition 3.9 (Crossing-, Linking- and Framing numbers).
(i) Any crossing in a framed oriented link diagram L (Def. 3.8) loclly is either of the following, up to local

orientation-preserving diffeomorphism, which we assign the crossing number ±1, respectively, as shown:

#

( )
= +1 , #

( )
= −1 . (15)

(ii) For (Li)
N
i=1 the connected components of L, the linking number lnk(Li, Lj) is half the sum of crossing numbers

between Li and Lj (cf. [Oh1, p. 7]).
(iii) The framing number fr(Li) is the sum of crossing numbers of Li with itself.
(iv) The sum #L of the crossing numbers of all crossings of L – traditionally called the writhe [1, p. 152][Oh1, p.

523] – is hence the sum of all the framing and linking numbers:

writhe #(L) :=
∑
c ∈

crssngs(L)

#(c) =
∑
i

frm(Li) +
∑
i,j

lnk(Li, Lj) . (16)

Example 3.10 (Invariance of framing number). The framing and linking numbers (Def. 3.9) are invariants
depending only on the equivalence class of a framed oriented link diagram. The following moves show how successive
self-crossings of opposite crossing number cancel out (by the Reidemeister moves):

−

+

−

+

+

−

+

−

In order to relate framed links in detail to string loops, we need a more combinatorial description of equivalence
of link diagrams. This is provided by functorial knot theory [Ye01] via:

Proposition 3.11 (Shum’s Theorem [Sh94]). Framed oriented links (Def. 3.8) are equivalently the endomor-
phisms of ∅ in the category of framed oriented tangles, which is the ribbon category (aka tortile category) freely
generated by a single object.

What this means here (cf. [Ye01, §9.1]) is that for a function on link diagrams to descend to equivalence classes
and hence to be a link invariant, it is sufficient that it respects (beyond wiggling of edges) the moves shown in Table
D, which subsume the Reidemeister moves (Figure R) but also zig-zag yank moves to account for diagram isotopy,
combinatorially. For background on ribbon/tortile monoidal categories and the translation of their axioms to tangle
diagrams as shown in Table D, see [Sel11] (going back to [JS93, Prop. 2.7] for the case of the 3rd Reidemeister
move).
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Ribbon
category
axiom

Table D – Ribbon category presentation of framed ori-
ented links according to Shum’s theorem (recalled as Prop.
3.11). Note that for the slide moves there is also the correspond-
ing mirrored version, which we are not showing to save space.

Framed oriented
link diagram

move

b
ra

id
in
g
is
o
m
o
rp

h
y

2
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d

R
e
id
e
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e
iste

r
m
o
v
e

b
ra

id
in
g
n
a
tu

ra
li
ty ... ...

A B

... ...B A slid
in
g
m
o
v
e
s
⇒

3
rd

R
e
id
e
m
e
iste

r
m
o
v
e

b
ra

id
in
g
h
e
x
a
g
o
n

la
w

d
u
a
li
ty

tr
ia
n
g
le

la
w

z
ig
-z
a
g
y
a
n
k
m
o
v
e

tw
is
t
ri
b
b
o
n

p
ro

p
e
rt
y

1
st

R
e
id
e
m
e
iste

r
m
o
v
e

Definition 3.12 (Charged string loops as framed oriented links). From a framed oriented link diagram (Def.
3.8), we obtain a based loop in Okuyama’s configuration space of charged strings in R2 (Def. 3.3) by thickening
the underlying link to a string worldsheet (as illustrated in Figure F below):

FrmdOrntdLnkDgrm Ω0 Conf
I(R2) . (17)

Note that this is well-defined due to our condition in Def. 3.8 that link diagrams have well-separated crossings
and no straight horizontal segments: These conditions imply that the intersection of the link diagram with any
horizontal line R1 ↪! R2 is a finite set of points, and that as we move the horizontal line vertically, these points
(i) move, (ii) cross, (iii) merge, or (iv) emerge over well-separated intervals, which translate to the corresponding
string worldsheets, where the orientation of the link determines the charges on the endpoints of these strings.
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Figure F – Charged string
loops as framed oriented
links. Notice how it is the
stringy nature of the loops of
configurations on the right (via
Def. 3.3) that reflects the “black-
board framing” of the link dia-
grams on the left. This framing
would be absent for configurations
of charged points as on the left of
Figure 2.

7!

7!

7!

7−!

Example 3.13 (Link cobordism). The first and third move of charged open string worldsheets from Ex. 3.7
relate diagrams whose pre-images under (17) are framed oriented link diagrams as shown in the following moves
shown on the left:

∅ ∅

(18)

These relations (which go beyond those from Table D defining basic link diagram equivalence) are known, respec-
tively, as the birth/death move and the fusion moves ([Kh00, §6.3][Ja04, Fig. 15], cf. [Lo24, Fig. 12]) or oriented
saddle point moves (e.g. [Kau15, Fig. 16]) generating (on top of usual link diagram equivalence) the relation of
link cobordism2.

2Beware that early authors (e.g. [Ho68][CS80]) say “link cobordism” for what is now called “link concordance”, namely for cylindrical
cobordisms only. In this case, the corresponding equivalence classes of links are non-trivial. The modern use of “link cobordism” for
actual cobordisms considered here seems to originate with [Kh00, §6.3], cf. [Lo24, Fig 12]. With this notion, all (framed) links are
equivalent to (framed) unknots (Lem. 3.16 below), and hence the broader interest in general link cobordism is instead in characterizing
the cobordisms themselves, notably through their associated homomorphism between Khovanov homologies [Ja04].
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Proposition 3.14 (String loop classes as link invariants). The map (17) descends to equivalence classes,
here sending framed oriented links (instead of their representing diagrams) to elements in the fundamental group
of the stringy configuration space:

FrmdOrntdLnk π1

(
ConfI(R2)

)
. (19)

Proof. It is clear that the sliding rules and hence
the 1st and 2nd Reidemeister moves in Table D
are respected. The zig-zag move is respected by
(13).

What remains to be shown is that also the 1st
Reidemeister move is respected.
For this, it is sufficient to show that the extra
moves (18) imply the 1st Reidemeister move.
That this is the case is shown on tne right.

That the map (19) thus established is surjective
is implied by the following analysis, culminating
in Thm. 3.18 below.

− + − +

□

Example 3.15 (Group of stringy images of framed unknots). The images of the framed unknots under (19)
constitute an integer subgroup Z ⊂ Z ≃ π1

(
ConfI(R2)

)
(cf. Prop. 3.6) whose group operation corresponds to

the addition of framing number (Def. 3.9). For instance, the following is the move corresponding to the equation
1 + 1 = 2 in this subgroup:

In fact, this subgroup inclusion is surjective (27), hence exhausts the full fundamental group, by the following
further analysis.
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Lemma 3.16 (Framed links are cobordant to framed unknots). Every framed oriented link is related by
the stringy moves (18) to a framed oriented unknot.

Proof. Using the zig-zag move (13) and the saddle move (18), every crossing may be turned into an avoided crossing
of a straight edge with a twisted edge, like this:

(20)

Applying such a move to all crossings of a given link diagram yields a framed unlink. Then forming the connected
sum of its connected components (as in Ex. 3.15) yields a framed unknot.

Example 3.17 (Framed links turned into framed unknots). The Hopf link becomes the unknot with framing
±2 by applying the saddle move either on the right or in the middle, depending on the given orientations:

(21)

(22)

If we understand the stringy moves applied already to the corresponding framed link diagrams, then we may
draw the above example more succinctly as

−

−

(23)

Further examples in this notation are the following: The trefoil knot becomes

++

+

(24)

and the figure-eight knot becomes

−

−

++

(25)

Using all this, finally, we have:

Theorem 3.18 (Charged open string loops classified by crossing number). The map (19) from framed
oriented links to the fundamental group of Okuyama’s configuration space of charged open strings in the plane is,
under the latter’s identification with the integers (11), given by sending a link L to its writhe #(L) (16):

FrmdOrntdLnk π1

(
ConfI(R2)

)
≃ Z .

L 7−! #(L)
(26)
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Proof. By Lem. 3.16, the image of L is equivalently a framed unknot via the saddle moves (18). Since all framed
unknots are multiples of the unit-framed unknot, by Ex. 3.15, this exhibits the unit framed unknot as the generator



= 1 ∈ Z ≃ π1

(
ConfI(R2)

)
. (27)

(which hence corresponds to the Hopf fibration under the identification of Prop. 3.6).
Moreover, since the saddle move (20) used in Lem. 3.16 manifestly preserves writhe # (16), the writhe of the

resulting unknot (being its framing number) is that of L (cf. Ex. 3.17), and hence it represents the #(L)-fold
multiple of the generator (27).

Remark 3.19 (Relation to discriminants of configurations). A statement similar to our Thm. 3.18 appears
as [MR23, Thm. 5.2] following [GL69, Lem. 3.6] (we are grateful to Jack Morava for pointing this out): There is
a locally trivial fibration

∆k : Confk(C) C× ,

called the discriminant and given by the product of C-coordinate differences of distinct points in a configuration,
which is such that under passage to π1 it becomes the writhe function (16)

#k =π1(∆k) : Brk Z
on plain braids (counting their signed number of crossings). We may thus think of the discriminant as giving a
complex-analytic formula for the “restriction” from framed links to plain braids of our assignment (26) (in that
every framed link can be obtained from adding framing to a plain braid and then closing it by connecting endpoints).

Remark 3.20 (Comparison to Pontrjagin theorem).
(i) Under the equivalences of Prop. 3.6, Thm. 3.18 is similar to the statement of the Pontrjagin theorem (review in
[SS23a, §3.2][SS20a, §2.1]) specialized to codimension=2 submanifolds in R3, which says that Cohomotopy cocycles
R3

∪{∞}−! S2 essentially correspond to closed 1-dimensional submanifolds in R3 (hence: links) equipped with normal

framing and that coboundaries (homotopies) between such cocycles correspond to cobordism between such normally
framed links.
(ii) By carefully translating between the different notions of framings – the framing in the sense of framed links as
above in Def. 3.8 is not the same as a normal framing, but closely related (and both are of course different from
tangential framing of the links) – this statement matches the above, and Thm. 3.18 may be viewed as a re-proof
of Pontrjagin’s theorem in these dimensions (cf. [Br93, p. 126]) from Okuyama’s theorem [Ok05].

(iii) Besides the transparent diagrammatic analysis shown above, for our purposes this re-proof makes manifest the
relation both to solitonic 3-branes insides M5-branes (as per Figure 1) and to anyon/anti-anyon braids of vanishing
total charge (as per Figure C).

Remark 3.21 (Loops based in the n-component).
(i) Since the group completed configuration space GConf(R2) is, by construction, a topological group, it follows
abstractly that all its connected components are, in particular, weakly homotopy equivalent, hence so are those of
the weakly equivalent stringy configuration space ConfI(R2), by Prop. 3.4, and hence so are the loop spaces based
on any of these connected components:

∀
n,n′∈Z

Ωn Conf
I(R2) ≃ Ωn′ ConfI(R2) .

(ii) More concretely, we may now exhibit this equivalence in terms of the interpretation of loops in ConfI(R2) as
framed links that we have established. Or rather, this interpretation applies to the loops in the 0-charge sector,
while loops in the charge=n sector may be understood more generally as braids on n strands interlinked with any
number of links.
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Figure L. An example of a loop
in ConfI(R2) based in the com-
ponent of total charge n = 3.

∈ Ω3 Conf
I(R2) .

(iii) To see the homotopy equivalence of the form Ωn Conf
I(R2) ≃ Ω0 Conf

I(R2) (and hence also all the others) in
terms of such “framed link-braids” (Figure L) being equivalently framed links with un-braids, and hence equivalently
just framed links, observe that the saddle move from Lem. 3.16 in the following symmetrized form

(28)

un-braids any braid-link at the cost of picking up a corresponding collection of further framed link components,
e.g.:

(29)

This concludes our general analysis of ΩGConf(R2). In the next section we come back to understanding this as
the moduli space of cohomotopically flux-quantized solitons on open M5-branes and use the above Thm. 3.18 to
determine these pure quantum states of these solitons.
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4 Quantum observables

We now put all the pieces together and show that the quantized topological soliton sector on holographic M5-branes
under consideration is controlled by (abelian) Chern-Simons theory.

Topological Quantum Observables. First, we briefly recall the general notion of (discrete light cone) quantum
observables on topological charge sectors of flux-quantized higher gauge fields according to [SS23d] (previously
applied to Hanany-Witten brane configurations in [SS22][CSS23][Col23]). Given a flux quantization law A for
higher gauge fields on a spacetime domain X equipped with the structure of an S1-fibration X ! Y (as in M/IIA
duality), the corresponding algebra of light-cone quantum observables on the topological charge sectors may be
understood to be the homology of a based loop space of the A-cocycle space on Y :

QObs• ≡ H•
(
ΩMaps∗/(Y, A); C

)
, (30)

equipped with the Pontrjagin product

QObs• ⊗QObs• QObs•

H•
(
ΩMaps∗/(Y, A)

)
⊗H•

(
ΩMaps∗/(Y, A)

)
H•

(
ΩMaps∗/(Y, A)×ΩMaps∗/(Y, A)

)
H•

(
ΩMaps∗/(Y, A)

)
(−)·(−)

≃
Künneth

isomorphism

push along
loop concatenation

(31)

and with the anti-involution
(−)∗ : Obs• −−! Obs• (32)

given by push-forward of homology along reversal of loops followed by complex conjugation (reflecting discrete light
cone time reversal).

Remark 4.1 (Nature of the topological observables).
(i) In (30) the classifying space A is (just) the “topological realization” (the “shape”, see [SS21, §3.3]) of the full
higher moduli stack of on-shell flux quantized higher gauge fields, the latter being a homotopy fiber product of A
with the classifying sheaf Ω1

dR(−; a)clsd of on-shell flux densities (as explained in [SS24c, §3.3][SS24a][GSS24a] with
technical details in [FSS23, §9]).
(ii) This means that the observables in (30) do not resolve the actual higher gauge field configurations but only
their topological soliton sectors, whence they are “topological observables” only, which is what we are interested in
here.
(iii) Moreover, where in the traditional path-integral picture the non-commutative product operation on quantum
observables reflects their successive temporal ordering, the Pontrjagin product (31) orders by windings of observed
configurations along the S1-circle fiber, which hence plays the role of the boosted circle fiber in discrete light cone
quantization, cf. [SS23d, p. 8].

Therefore the sector of the quantum states that suffice to take expectation values of these topological quantum
observables are, for short, the topological quantum states:

Topological quantum states. Given a star-algebra of quantum observables, the corresponding quantum states
are embodied by the expectation values that they induce, which are linear forms ρ on observables subject to (1.)
reality, (2.) semi-positivity, and (3.) normalization (e.g. [Mey95, §I.1.1][Wa10, §7][La17, Def. 2.4], exposition in
[Gl11, p. 6]):

QStates• :=

{
ρ : Obs• C

linear

∣∣∣ ∀
O∈Obs•

(
ρ
(
O∗) = ρ(O)∗

reality

, ρ(O∗ ·O) ≥ 0 ∈ R ↪! C
(semi-)positivity

)
, ρ(1) = 1
normalization

}
. (33)

This subsumes all mixed states (“density matrices”). Among them, the pure states (those which form a Hilbert
space of states) are characterized as not being convex combinations of other states.

Note that (the expectation value of) a state ρ in (33) is not required to preserve the algebra product, those that
do are called multiplicative states:

ρ : Obs• −! C is multiplicative :⇔ ∀
O,O′∈Obs•

ρ
(
O · O′) = ρ

(
O
)
ρ
(
O′) . (34)

For these, we will need the following general fact:

Lemma 4.2 (Multiplicative states are pure (e.g. [Zhu93, Ex. 13.3-4][Wa10, Lem. 7.20-21])). Every multi-
plicative state (34) is pure; and on central observables the multiplicative states coincide with the pure states.
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Quantum states of solitons on holographic open M5-branes. Specializing this to the present case of solitons
stuck at the O-planes of holographic open M5-branes wrapped on S1

A (according to Figure 1) with their B-field flux
quantized in equivariant 3-Cohomotopy (5), Prop. (3.4) gives that the topological quantum observables (30) here
are:

QObs• ≡ H•
(
ΩConfI(R2); C

)
.

From the base case of the Hurewicz theorem, this means that in degree= 0 these topological quantum observables
form the space

Obs0 = C
[
π0

(
ΩConfI(R2)

)]
and, as such, are represented by compactly supported functions

O : π0

(
ΩConfI(R2)

)
C . (35)

Now, by Thm. 3.18, these quantum observables detect the writhe #L of the links L which the solitons (of
vanishing total charge at the O-plane in the M5-brane) form in their transverse space as discrete light-cone evolution
moves them along the along S1

A. A choice of C-linear basis of the topological quantum observables is hence given
by:

Obs0 ≃
〈
On : [L] 7! δ

(
#(L), n

)〉
n∈Z

, (36)

in which the Pontrjagin product (31) and star-operation (32) is readily found to be

On · On′ = On+n′ ,
(
On

)∗
= O−n . (37)

Proposition 4.3 (The pure topological quantum states in degree=0). The (expectation values of) pure
quantum states (33) on QObs0 (36) are precisely the linear maps of the form

QObs0 C
On 7−! exp

(
2πi
k n

)ρk

(38)

for any
k ∈ R \ {0} . (39)

Proof. With (37) and by Lem. 4.2, a pure state ρ on the commutative observables Obs0 restricts to and is fixed
by a group homomorphism

ρ
(
On+n′

)
= ρ

(
On · On′

)
= ρ

(
On

)
ρ
(
On′

)
from the additive group of integers to the multiplicative group of non-vanishing (due to the normalization condition)
complex numbers, hence: Z C×

n 7−! ρ
(
On

)
= ρ(O1)

n .
(40)

Moreover, using also the reality condition (33) gives that ρ(O1) is unitary

ρ
(
O1

)∗
=
(33)

ρ
(
O∗

1

)
=
(37)

ρ
(
O−1

)
=
(40)

ρ
(
O1

)−1

and hence of the claimed form (38).
It just remains to observe that every map of the form (38) really is (the expectation value of) a quantum state

(33), which follows readily.

Remark 4.4 (Pure topological quantum states as wave-functions). Being linear forms on 0-homology
Obs0 ≡ H0

(
ΩConfI(R2)

)
, the pure topological quantum states (38) are naturally identified with 0-cocycles in

H0
(
ΩConfI(R2)

)
and as such are functions on our soliton configuration space of the form

ΩConfI(R2) π0

(
ΩConfI(R2)

)
C

L 7−! exp
(
2πi
k #(L)

) (41)

in that their evaluation on a 0-chain representing the homology class On — namely on any (framed, oriented) link
L with writhe n (16) — is exp

(
2πi
k #(L)

)
= exp

(
2πi
k n

)
.

This is remarkable because it coincides with the known form of quantum states/observables of abelian Chern-
Simons theory:
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Remark 4.5 (Identification with quantum observables of U(1)-CS theory).
(i) For Chern-Simons theory with abelian gauge group U(1) it is widely understood by appeal to path-integral
arguments ([Wi89, p. 363][FK89, p. 169] following [Pol88]) that

• the quantum states of the gauge field are labeled by a level 3 k ∈ R \ {0},
• the quantum observables are labeled by framed links L,
often considered as equipped with labels (charges) qi on their ith connected component Li

and the expectation value of these observables in these states is the charge-weighted exponentiated framing- and
linking numbers (Def. 3.9) as follows ([Wi89, p. 363], cf. review e.g. in [MPW19, (5.1)]):

Wk(L) = exp

(
2πi
k

(∑
i q

2
i frm(Li) +

∑
i,j qiqj lnk(Li, Lj)

))
. (42)

(ii) However, with the charges qi being integers, we may equivalently replace a qi-charged component Li with qi
unit-charged parallel copies of Li, and hence assume without loss of generality that ∀i qi = 1. With this, we may
observe that the Chern-Simons expectation values (42) coincide exactly with our pure topological quantum states
(41):

Wk(L) = exp

(
2πi
k

(∑
i

frm(Li) +
∑
i,j

lnk(Li, Lj)
))

=
(16)

exp
(

2πi
k #(L)

)
.

In conclusion, we have established the following:

Fact. With flux quantization on flat M5-branes taken to be in 3-Cohomotopy (§2), the pure topological quantum
states (Prop. 4.3, Rem. 4.4) of B-field solitons stuck on O-planes in open holographic M5-branes wrapped on S1

A

(Figure 1) are in any total charge sector (Rem. 3.21) exactly those of abelian Chern-Simons theory (Rem. 4.5).

Remark 4.6 (Comparison to the literature).
(i) Specifically, the emergence of U(1)-Chern-Simons theory on M5-branes has previously been argued in [MPW19]
by inspection of Wilson loops in D = 5 super Yang-Mills theory. The realization of non-abelian Chern-Simons knot
invariants on suitably wrapped M5-branes has previously been argued in [Wi12][GS12], see also [NO16, §1.1].
(ii) It may be noteworthy that in these previous references, going back to [Pol88][Wi89], the all-important framing
of links is imposed in an ad hoc manner in order to work around an ill-defined expression appearing from the
path-integral arguments (going back to [Pol88, p. 326]), whereas above we use only well-defined constructions and
the framing instead emerges automatically (under Hypothesis H) by careful analysis of the moduli of solitons on
M5-branes, via Okuyama’s theorem.

3Note that the level quantization, which for non-abelian compact gauge groups forces the level k to be an integer, does not apply in
the abelian case considered here (cf. e.g. [FK89, p. 169]) so that the level may indeed be any non-zero real number, just as in (39).
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5 Conclusion

Motivated (in §1) by suggestions that desired but subtle anyonic quantum states as expected and apparently
observed in fractional quantum Hall materials could be elucidated by their geometric engineering on M5-branes, we
have (in §2) briefly recalled relevant aspects of the recent global completion [GSS24b] of the field content on (here:
flat and “open”) M5-worldvolumes by flux quantization laws, specifically by the candidate law of co-Homotopy
theory [SS24c].

The main result (in §3) is an analysis of the topological sector of the phase space BRST complex of the
corresponding solitonic excitations on the flat M5 ⊥MO9-configurations (Figure 1), identified with loops in the
group-completed configuration space of points in the plane (representing the solitons in their transverse space). By
unraveling a possibly underappreciated result by Okuyama [Ok05], we could identify (Prop. 3.14) these loops with
stringy loops (Figire 2) forming framed links (Prop. 3.14) and show (Thm. 3.18) that their (gauge) equivalence
classes are labeled by the framing number plus twice their linking number. (A variant of the classical Pontrjagin
theorem, Rem. 3.20, which may be of interest in its own right.)

Finally observing (in §4) that just this invariant gives the quantum observables of abelian Chern-Simons theory
(Rem. 4.5) we found from algebraic quantum theory (Prop. 4.3) that the pure topological quantum states of our
solitons (according to the topological light cone quantization of [SS23d]) are exactly those of abelian Chern-Simons
theory, exhibiting our quantized solitons as abelian anyons.

Generally, this result amplifies that crucial topological effects in strongly-coupled/correlated quantum systems
engineered on branes in string/M-theory depend on the global completion of (higher) gauge fields by flux quan-
tization laws in non-abelian differential cohomology [SS24c]. This is only beginning to be understood, requiring
machinery from equivariant geometric homotopy theory that is still relatively novel [SS20b][FSS23] (quick exposition
in [Sc24]), certainly in its application to quantum physics.

Concretely, it is interesting that the link diagrams (of soliton configurations) – that emerged in §3 and were
identified in §4 as worldlines of anyonic quantum defects – are just the kind of processes envisioned in many texts
on quantum-computational processes based on anyon braiding:

Figure C. In the traditional picture of anyon braiding processes implement-
ing topological quantum computations (e.g. [Kau02, Fig. 17][FKLW03, Fig.
2][NSSFD08, p. 10][Ro16, Fig. 2][DMNW17, Fig. 2][RW18, Fig. 3][Ro22,
Fig. 1]), the computation is:

(i) initialized by creating anyon/anti-anyon pairs out of the vacuum ∅,

(ii) executed by adiabatically braiding their worldlines,

(iii) read-out by annihilating the anyons again into the vacuum ∅.

This means that the computation is encoded by a link diagram and that its

result is the corresponding Wilson loop observable, just as here we naturally

found realized on M5-branes (albeit only for the abelian case). ∅ ∅

∅ ∅

Outlook. While abelian anyons are not universal for topological quantum gates by themselves, they become so
already when combined with quantum measurement gates (see [Pa06][Ll02][Wo10][WP11]). Therefore, experimental
realization in the form of manipulatable solitons (as found here on holographic M5-branes) would be a major step
towards fault-tolerant quantum computation, and a microscopic holographic understanding of their nature should
eventually be conducive to overcoming the present impasse in laboratory realizations of anyons.

In order to obtain a more complete such microscopic holographic understanding of (abelian) anyons, one will
need to pass beyond the sector of topological quantum observables considered here (cf. Rem. 4.1) in order to
resolve the quantum dynamics also of the local B-field gauge potentials (cf. [GSS24b, §4.1]) and of the fluctuations
of the M5-brane worldvolume. We have been preparing the ground for this in [GSS24c], and we hope to take further
steps in this direction in the future.
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