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Abstract

Comprehensive flux-quantization of the M5-brane’s tensor field — consistent with its non-linear self-duality
and with its twisting by the bulk C-field — exists only in little-studied non-abelian generalized cohomology
theories, notably in a twisted equivariant (and “twistorial”) form of unstable Cohomotopy (“Hypothesis H”)
— but it is only through such flux-quantization that the field is globally completed, with well-defined solitonic

configurations and torsion charges.

In these lecture notes we review the construction for an audience familiar with the general notion of flux-
quantization (for which see [44]). The key result is a rigorous first-principles derivation of anyonic topological
order on (single) magnetized M5-branes probing Seifert orbi-singularities (“geometric engineering” of anyons),

which we motivate from open theoretical problems in the field of quantum computing.

Lecture notes (2nd part) for the lecture series
Introduction to Hypothesis H
held at
45th Winter School on Geometry and Physics
Srni, Czechia (18-25 Jan 2024)

Contents

1 Motivation: Better Anyon Theory
2 Flux-Quantization on M5-Probes
3 Cohomotopy charge of Solitons

4 The topological Quantum States
A Background on Homotopy Theory

B Background on TED Cohomotopy

10

12

16

17

@ Mathematics, Division of Science; and
Center for Quantum and Topological Systems,
NYUAD Research Institute,
New York University Abu Dhabi, UAE.

b The Courant Institute for Mathematical Sciences, NYU, NY.

The authors acknowledge the support by Tamkeen under the NYU Abu Dhabi Research Institute grant CGO08.

CENTER FOR
QUANTUM &
TOPOLOGICAL
SYSTEMS


https://ncatlab.org/schreiber/show/Introduction+to+Hypothesis+H
https://conference.math.muni.cz/srni/
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems

1 Motivation: Better Anyon Theory

While the hopes associated with the idea of quantum computing [81][49] are hard to over-state [45][8][91], there are
good arguments that commercial-value quantum computing will ultimately require quantum hardware exhibiting
anyonic topological order [119][43]. But microscopic theoretical derivations, from first principles, of such anyonic
quantum states in strongly-coupled quantum systems had remained sketchy, which may explain the dearth of
experimental realizations to date.

What we review here (from [99][102][47]) is a rigorous theoretical account via “geometric engineering on M-
branes” subject to a previously neglected step of “flux-quantization” (the latter surveyed in [44]).

First, we expand on the motivation a little further:

Ultimate need for Topological Quantum Protection. Despite the fascinating reality of presently available
Noisy Intermediate-Scale Quantum computers (NISQ [89]) and despite the mid-term prospect of their stabilization
at the software-level via Quantum Error Correction (QEC [70][90], at heavy cost of available system scale), serious
arguments [59][22][68][23][24][54][37] and experience [14] suggest that large-scale quantum computation is hardly
attainable by incremental optimization of NISQ architectures, but [15] * that more fundamental quantum principles
will need to be exploited — notably topological error protection already at the hardware-level [63][34][104][103] in
order to suppress quantum errors occurring in the first place.

. . . . T 1
While topological quantum protection is thus pos- Quantum OPoloBy
sibly indispensable for achieving commercial-value computational hardware-level
quantum computing, its ambitious development, in advantage error-protection

theory and practice, is in fact far from mature, is AW e
in need of new ideas and of further analysis, and
leaves much room for development.
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Since this is not always made clear, to amplify this

(i) Theoretical challenges: While quantum theorists now routinely deal with the algebraic structure (namely:
braided fusion categories) commonly ezpected [64] to describe interaction of anyon species in toto, the mi-
croscopic first-principles understanding of the formation of anyonic topological order as solitonic states in the
many-body (electron) dynamics of quantum materials has remained at most sketchy, even in the best-understood
case of the fractional quantum Hall effect [106], cf. [56]. 2

In fact, this is an instance of the general open problem of analytically establishing gapped bound states in
any strongly coupled/correlated quantum system: The problem of formulating non-perturbative quantum field
theory [5][26]. The analogous issue in particle physics (there called the Yang-Mills mass gap problem [82]) has
been recognized as being profound enough to be declared one of seven “Millennium Problems” [11].

(ii) Practical challenges: But without a robust theoretical prediction of anyonic solitons in actual quantum
materials, it remains unclear where and how to look for them. As an unfortunate result, experimentalists
have turned attention to mere stand-ins, such as “Majorana zero modes” at the ends of super/semi-conducting
nonowires ([62][74] which, even if the doubts about their detection were to be removed [16], are by construction
immobile and hence do not serve as hardware-protected quantum braid gates) and quantum-simulation of
anyons on NISQ architectures ([55][33, Fig. 5], which might serve as software-level QEC but again offers no
hardware-level protection.

In short: Foundation and implementation of topological quantum computing as a plausible long-term pathway
to actual quantum value deserves and admits thorough re-investigation.

L[15]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum
computer that can solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error
correction by using far-more-stable qubits, in an approach called topological quantum computing.”

2[56, p. 3]: “Though the Laughlin function very well approximates the true ground state at v = 1/q, the physical mechanism of
related correlations and of the whole hierarchy of the FQHE remained, however, still obscure. [...] The so-called HH (Halperin—Haldane)
model of consecutive generations of Laughlin states of anyonic quasiparticle excitations from the preceding Laughlin state has been
abandoned early because of the rapid growth of the daughter quasiparticle size, which quickly exceeded the sample size. [...] the Halperin
multicomponent theory and of the CF model advanced the understanding of correlations in FQHE, however, on phenomenological level
only. CFs were assumed to be hypothetical quasi-particles consisting of electrons and flux quanta of an auxiliary fictitious magnetic
field pinned to them. The origin of this field and the manner of attachment of its flux quanta to electrons have been neither explained
nor discussed.”



Concretely, the intrinsic tension haunting the tra- (i) quantum gates are implemented via interaction of subsysterms,
ditional quantum computing paradigm is that:  (ii) while quantum coherence requires avoiding all interaction.

The idea of topological protection is to cut this Gordian knot by quantum gates operating without interaction.
The physical principle that allows this to work
[3][4][34, p 6][87, p 50] is the quantum adia-
batic theorem [92]: Gapped quantum systems
frozen at absolute zero in one of several ground
states, but dependent on external parameters,
will defy interaction with noise quanta below
the energy gap and yet have their ground state
transformed by sufficiently gentle tuning of
the parameters: a holonomic quantum gate.
This is topological if it is invariant under lo-
cal deformations of parameter paths, and thus
protected also against classical noise. For an
anyonic braid gate the parameters in question
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The remaining problem is to understand how such anyonic solitons may actually arise in quantum materials.

Improved Anyon Models via Geometric Engineering on M-branes. A remarkable solution to the otherwise
elusive microscopic analysis of strongly-coupled/correlated quantum systems emerges in the guise of “geometric
engineering” [61][10] of quantum fields on “M-branes” probing orbifold singularities, whereby the given dynamics
is (partially) mapped onto the fluctuations of Membranes (whence M-theory [20]), and of higher-dimensional “M5-
branes” [47], propagating within an auxiliary higher-dimensional gravitating spacetime orbifold [96].

M-brane fluctuating in

Geometric engineering of quantum sys- Strongly COUpl?d Lhkey auxiliary gravitational
tems on M-branes provides tools for quantum material properties spacetime orbifold
analyzing otherwise elusive strongly cou- A R
led/correlated quantum phenomena. direct analysis .
pled/ a P unfeasible }};ere analytical tools
exist here

This procedure is most famous in the (unrealistic) limit of large rank and hence of large numbers N — oo of
coincident such branes, where it extracts quantum correlators and quantum phase transitions entirely from classical
gravitational asymptotics (“holographic duality” [1]). The application to quantum materials [118][52] is now well-
studied, notably in the case of quantum critical superconductors engineered in M-theory [53][35][36][50][18][19][2].

But we have established [47][99][100][102] that after implementing a previously neglected step of “flux quantiza-
tion” [44] on the M5-brane wordlvolume, there provably appear general solitonic and specifically anyonic quantum
states already in the more realistic situation of single (N = 1) coincident branes. (Similar results for N = 2 had

previously only been conjectured by appeal to an expected but notoriously undefined effective quantum field theory
on coincident M5-branes.)
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Here, we will review and explain how this works for an audience assumed to be familiar with the general mechanism
of flux quantization as surveyed in [44]



A broad lesson following immediately from this successful geometric engineering of topological gbits is the
plausible existence of more exotic anyonic states than traditionally envisioned: Namely the “duality symmetry”
[88][20, §6] of M-theory predicts that any geometrically engineered quantum system has “dual” incarnations with
isomorphic quantum observables but entirely different geometric realization, where ordinary space is replaced by
more abstract parameter spaces. Notably “T-duality” [110][28][48] applied to topological quantum materials has
been argued [77][78][51] to exchange the roles of ordinary space with that of reciprocal “momentum space”.

(2) Novel experimental pathways towards anyons. Indeed, while anyonic solitons are traditionally envisioned
as being localized in “position space” (meaning that the anyon cores are points in the plane of the crystal lattice)
the physical principle behind topological quantum gates — namely [3][4][34, p 6][87, p 50] the quantum adiabatic
theorem [92] — is unspecific to position space and only requires the material’s Hamiltonian to depend on any
continuous parameters (such as external voltage or strain) varying in any abstract parameter space.

(a) Ground state degeneracy (when frozen at absolute zero, the system

The general physical conditions for still has more than one state to be in, even up to phase).
topological quantum gates given by the (b) Spectral gap (quanta of energy smaller than a given gap € > 0 cannot
quantum adiabatic theorem, listed (a) - (e) on excite these ground states).

the right, are much more general than tradi-
tionally considered for anyon braid gates —
the latter are only the special case where the
parameters are configurations of points in the
plane of the 2D crystal lattice.

(c) Control parameters (the above properties hold for a range of contin-
uously tunable external parameters).

(d) Parameter topology (there exist closed parameter paths that cannot
be continuously contracted).

(e) Local invariance (continuously deformed parameter paths induce the
same transformation on ground states).

This means that, in principle, the possibilities in which anyonic quantum states could arise in the laboratory
are far more general than what has been explored to date.

Concretely, a key example of alter-
native parameters for ground states E )
of a quantum material are points ! e
in their reciprocal momentum space: .

'

This is the space of (quasi-)momenta,

hence of wave-vectors for plane quasi-
particle waves going through the crys- :/'.

talline material. o TTomEEmmmmemeemes

Position space: Momentum space:
a point is a position a point is a plane wave
on the crystal lattice on the crystal lattice

We have observed before that candidate anyon-like solitons localized (not in position space but) in momentum
space are plausible both theoretically [43] as well as experimentally [117][108][58] and may have been hiding in
plain sight: as band nodes of (interacting) topological semimetals.

Indeed, momentum space naturally features key properties that are typi- Energy E |

cally assumed for anyon braid gates but remain elusive in position space: T~

(i) toroidal base topology is routinely assumed [111][112][71] in order ) N

to achieve the required ground-state degeneracy, but is quite unrealistic A

in position space, even more so when meant to be punctured by defect !

anyons — while the momentum space of a crystal is automatically a torus k, T2
(the Brillouin torus). e B?c:]r?.:m
(ii) stable defect points need special engineering in position space but arvatue of st

spike
&

arise automatically in momentum space in the guise of band nodes of ey Q
topological semi-metals [43, Fig. 6]

(iii) defect point movement in a controlled way is necessary for braid
gates but remains elusive in position space, while band nodes in momen-
tum space have already shown to be movable in a varierty of systems, by
tuning of external parameters (e.g. strain). ‘ T2

The geometric engineering of anyons discussed here goes towards providing also fundamental theoretical under-
pinning of the possibility of more “exotic” anyon realizations than have traditionally been envisioned.



2 Flux-Quantization on M5-Probes

The first task now is to understand the flux-quantization on M5-brane probes, according to [30][31][101].

We will not (need to) explain in full detail the (super-)geometry of probe branes nor of their (super-)gravity
backgrounds (full discussion is in [46][47]), but do offer the following broad dictionary, for orientation: *

M5-Brane probes (namely sigma-model branes, in contrast to black branes) are 5-dimensional objects propagating
in a gravitational target space X (the “bulk”), along trajectories that are modeled by (super-)immersions of their
6D (and N = (2,0)) worldvolume (super-)manifolds >

robe M5-brane . bs target /background
p n1,5|2:84 x1,10]32 get/backg (1)

(super-)worldvolume trajectory (super-)spacetime

(super-)immersion
Here the admissible (“on-shell”, meaning: satisfying the appropriate equations of motion) immersions ¢ are
controlled by the (super-)geometry of X — namely the brane’s trajectory is subject to the gravitational- and
Lorentz-forces exerted by the field content of X — but X itself remains unaffected by the choice of ¢5 — meaning
that the (gravitational) back-reaction of the brane on its ambient spacetime is neglected; this is what makes the
brane but a probe of the background X .

Thereby the probe brane (3, ¢5) plays a double role:

(i) on the one hand it is like a (higher-dimensional) fundamental particle, an “observer” of the bulk X in the sense
of mathematical relativity,

(ii) on the other hand it is itself a (super-)spacetime with its own (quantum) field content:
Remarkably, the magic of super-geometry makes such purely super-geometric immersions ¢, (1) embody not
just the naive (temporal-)spatial worldvolume trajectory, but also a 3-flux density HS on ¥ [47, §3.3]. This
is (on-shell) the notorious “self-dual” flux density whose accurate quantization (traditionally neglected) is our
main concern here.

This second aspect is what we are concerned with for the purpose of modeling strongly-coupled quantum systems:

The (1+3)D worldvolume M3 of a quan- M5-brane ambient bulk
tum material — or, for the intent of modeling worldvolume spacetime
an}ll(';ns, the effec‘gvely (1 + 2)D—Worldvolume S5 é Y110
M"b2 of a sheet-like material (e.g. an atomic
mono-layer akin to graphene) — is to be iden- l l xl/ A
tified with a sub-quotient of the brane world- | orbi- '
N N 1.9 singularity 1.4 1.9
volume, typically with a fixed locus (orb- M P X
ifold singularity) inside the base of a fibration )
. . quantum material D4-brane
(Kaluza—Klem I'edU.CthD). worldvolume worldvolume

Their flux-quantization (to recall from [44]) is then encoded in a choice of a fibration A £ B of classifying
spaces, subject to the constraint that the Bianchi identities for the (duality-symmetric) flux densities on bulk and
brane are the closure/flatness condition on Ip-valued differential forms, where [(—) forms Whitehead L -algebras
of these classifying fibrations (dual to their minimal relative Sullivan model).

Given such a choice, the topological sector of the higher gauge fields on bulk and brane are given by maps from
the brane-immersion into the classifying fibration:

With these comments on perspective out of the way, (Jensities of (charges of
the plan of this section are the following topics: brane 3 ------------ y Q=i A)asa = R
(1.) Bianchi identities on magnetized M5-probes 0 E l(lp)* . s
(2.) Flux quantization in Twistorial Cohomotopy 9
(3.) Aside: Projective Spaces and their Fibrations bulk X ----oooooo QUr(=B)asa X R
(4.) Orbi-worldvolumes and Equivariant charges bullc fluxes bullc fields

The first step of flux-quantization is to identify the Bianchi identities satisfied by the flux densities:

3All brane concepts we consider are well-defined and all conclusions have proofs — at no point do we rely on informal string theory
folklore beyond motivation.



Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent
space

REIOIS2 e isom(RV10182)  — 4 s0(1,10)

super-Minkowski super-Poincaré Lorentz
CE(Rl,lo\:sZ) ~ QaR(Rl,loBz)li ~ Ry (T)32, / (d‘lfa 07 ) .
super-transl. invar. forms (Ea)(ll()zo d E* = (\II e \IJ)

Remarkably, the quartic Fierz identities entail that [17][79][46, Prop. 2.73]:

with its super-invariant 1-forms (cf. [46, §2.1])

GY = (VD4 V) E“E™ in dG9 =
4 2( 1a2 ) c CE(R1,10\32)SP (1,10) satisfy : 4

0
0 . 1/ 0 _ 17200
G7 = Bl (\Ij Fal--~a5 \II) E* ... F9s fully super-invariant forms d G7 2 G4 G4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X — X given by

(T)3L,
10 1 such that the « oo b _ (Tra
(E“):, € QdR(X) super-torsion dE® - Q% E° = (\IIF \If),
b ba 10 vanishes
(Qa =0 a)a,b:O
and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:
G = G4+ GY = $(Ga)aya,B® - E% 4+ L(UTDy,,, V)E“ B
Gy = Gr+GY = 2(Giaya; BB + L(UDy, .y V)E - B

Theorem [46, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (G5, G3):

the full 11D SuGra

The duality-symmetric | dG; = 0
equations of motion!

. . . is equivalent to
super-Bianchi identity dG: = 165G }

Next, on the super-subspace R!.512:8+ <%0, RLI0I32 fiveq by the involution T'g19345 € Pin™(1,10) we have:

HY == 0 € CE(R175|2'8+)Spin(l’5) satisfies : dHY = ¢8G9

To globalize this situation, say that a super-immersion X-°12:8+ P, x110132 g 1,BPS M5 if it is “locally
like” ¢g, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

Hi = Hs + HY := %(H3)a050,6" €*2€% + 0 (e = ¢1E")

Theorem [47, §3.3]: On a super-immersion ¢, with B-field super-flux Hj:

the Mb5’s B-field

The super-Bianchi identity {d H3 = QS;GZ} is equivalent to , :
equations of motion.

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are implied: G4 <> G7 and Hs <> Hsj.

Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:
F) = () =0 € CE(R1’5 | 2'8+)Spin(1’5) satisfies : dF) =0

Globalizing this to 15128+ via

Fs == Fy + F5 = 1(F2)aya, €€ + 0

we have on top of the above:

Theorem [102, p 7]: the Chern-Simons

The super-Bianchi identity {d F5 = 0} s equivalent to EOM: Fy — 0,



Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan ge-
ometry locally modeled on the 11D super-Minkowski spacetime R'19132 entails that on-shell 11D supergravity
probed by magnetized 1/2BPS M5-branes implies and is entirely governed by these Bianchi identities on super-flux
densities:

Afield dF5 = 0 dGi= 0 C-field
self-dual s __ * /Y8 s 1S s _ 1,vs s dual
bosoa dH3 = ¢:Gi + 0F5 Fs dG? = 5G; G} Cflad (2)
. s
M5 probe »1512:84 X111|s2 SuGra bulk

1/2BPS immersion
Here we have observed that the Green-Schwarz term F5 Fy may equivalently be included for any theta-angle 6 € R
without affecting the equations of motion (since, recall, the CS e.o.m. F5 = 0 is already implied by d F5 = 0).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic
and torsion charges of the fields. The choice of flux quantization according to Hypothesis H [30][31] is the following:

Admissible fibrations of classifying ST/ U(1) ~ S7 x CP>® S7 h“ . HP!
spaces for cohomology theories with LS ‘ H-Hopf fibration

the above character images (2). The ho- C-Hopf fibration

motopy quotient of S” is (i) for # = 0 by i

the trivial action and (ii) for 6 # 0 by the

principal action of the complex Hopf fibra- |6 # 0 ST/U(1) = cp3 m» HP!
tion.

Proof. This may be seen as follows

(31, Lem. 2.13]: dog—2 ~ BU(1)

. n. ~ ~/= n+1 . oo, ~
Since the real cohomology of projective space H ((CP ) R) - R[ @ ]/(Cl ) H ((CP ) R) ~ Rlei]
3 3 ° n. ~ n+1 ° 00, ~
is a truncated polynomial algebra, H (Hp : R) ~ R[é&]/(p]-‘i’ ) H ((CP : R) ~ R[%pﬂ

dop—i ~ BSp(1) ~ BSU(2)
n f2 d f2 =0
the minimal dgc-algebra model for CP™ needs CE([CP ) =~ Rq [h / dh = (fo)+!
2n-+1 2n+1 2
a closed generator fs to span the cohomology
and a generator hg,41 in order to truncate it; g1 d gs -0
logously for HLP™. CE[HP":R[ ]/( - )

AnAtosOtsty Tt ( ) U gants dganis = (ga)"
Furthermore, since the second Chern class of BU(1) B(er diag(e,c”)) BSU(2)
an S(U(l)z)—bundle is minus the cup square ) .
of the first Chern class (by the Whitney sum —(c1) — 3b1 =C2
rule)
the minimal model of CP? relative to that of f2 dfs =0
HP; needs to adjoin to the latter not only fo CE(I,,CP%) ~ Ry hs / dhs = gs+ fof2
but also a generator h3 imposing this relation w 94 dgs =0
in cohomology. g7 dgr = %94 94

The resulting fibration of L.,-algebras is manifestly just that classifying the desired Bianchi identities (2)
(we are showing the case 6 # 0, which by isomorphic rescaling may be taken to be § = 1):

F2 dF2 = 0
26 --m-- » Qg (=1, CP3 Q8 (20) «--—-- CE(1,,, CP? € Q§r(2°
dR( Hpl )clsd dR( ) (HPI ) 3 dR( ) dH3 = G4+F2F2
¢ (Itx). = ®* (Vt)* <~
G4 dG4 = 0
i > QLo (—; (HP (01N C L) RR— CE(IHP! € Qp (XM
dR( )clsd d ( ) ( ) G7 dR( ) dG7 = %G4G4




Aside: Projective Spaces and their Fibrations — some classical facts.

Consider:

division algebras R — C < H generically denoted K € {R, C, ]HI}

groups of units
projective spaces KP" := (K" \ {0})/K*

higher spheres ~ S™ ~ (R™*'\ {0})/R_,

K* := K\ {0} understood with the multiplicative group structure

K-Hopf fibrations are the quotient co-projections induced by ¢ : R_, — K

The classical Hopf fibrations hg are:

§~ R*/R.,

=

St~ (R2\{0}) /R,

bl

St~ (R*\{0}) /R*
o/

N—
R P CP!

§'~ C/R,,

[
I

The Hopf fibrations in higher dimensions are the attaching
maps exhibiting the topological cell-complex structure of
projective spaces [83], from which the (cellular) cohomology
follows readily.

Further factor-fibrations arise by factoring the Hopf fibra-
tions via the stage-wise quotienting along

R, —R<—C-—H

Notably, the classical quaternionic Hopf fibration hy fac-
tors through a higher-dimensional complex Hopf fibration
followed by the

Calabi-Penrose twistor fibration iy [31, §2].

Equivariantization: Since the quotienting is by right actions,
these fibrations are equivariant under the left action of

Spin(5) ~ Sp(2) := {g € GLy(H) |gJr cg=e}.

53~ (C?\{0})/R_,

5~ (E\(0))/c

—_———

S8~ HX/R.,

Jer

57 (52 (0)) B,
-

S* ~ (H*\{0}) /H*
_H\I,)l_/

S(K"*l) —_— %

|

KP? e KP™H!

SL=CY/R,,

ST~ (H*\{0})/R.,

he complex
~ Hopf fibration

SQZ\:HX/CX

CP3 ~ (H*\{0})/C~

Calabi-Penrose
twistor fibration

quaternionic

t
Hopf fibration "H H

HP' ~ (H?\{0})/H*

CP3 e HP!
A =
S (HXH\{0})/C* — (HxH\{0}) /B>
For example, the involution ¢ := [(1) (1)} € Sp(2) o \ \ -
. Y v
swaps the two copies of H: (H@H\{O})/CX N (H@H\{O})/HX
4 ~
cp? . HP!
CP3)™ ~ (H\{0})/C* =~ 5?
\{0}
The resulting Zs-fixed locus is the 2-sphere: l(tﬂ)zz i J
HPH)™ ~ (H\{0})/H* ~ =«

This is the 2-sphere coefficient that will end up being responsible for stabilizing anyons on orbi-worldvolumes!

We next discuss how this comes about.



Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to orbifolds * by generalizing the
cohomology of the charges to equivariant cohomology [96].

In terms of classifying spaces this simply G. orbibrane G (Zzl
means that all spaces are now equipped with orbi- ( l,,,f},“frief,,>( .Al' Cp3
the action of a finite group G and all maps are worldvolume e ceuivariant . o
required to be G-equivariant. ol & PJ{ classifying t“l t,wi;i:(f)cl)'liva?q(lfltl)iﬁ)ﬁllil)ll‘t(l])V
We take G := Z5 and the classifying fibration o fibration... !
. . . . orbr- vV ___________ -
to be the twistor fibration p := ty equivari- spacetime (o orbibulk (357 (S y
ant under swapping the H-summands, G charges G Z2
and the brane/bulk orbifold we take to be as on p. 3:
The orbi-brane diagram for a flat M5-brane L (ZQQ
wrapped on a trivial Seifert-fibered orbi-singularity. o= RLO » R2 % Sl x R2
Shaded is the Za-fixed locus/orbi-singularity. U{oo} ssn
We are adjoining the point at infinity to the space ¢J: Zo
]Rﬁ{oo} ~ 52 which is thereby designated as ()
homeo X = RLO X RQ X Sl X RQ X RE)
transverse to any worldvolume solitons to be mea- Cx U{oo} sgn
sured in reduced cohomology. L2 t trnsvrs space M/IIA- orbi- trnsvrs space
mme to solitons circle cone to Mb5-brane
)
But since the cone S~ ‘ - the inclusion of the Zo- YZ: _~ 'y
Zo C]Rggn is equivari- Z» ﬁ:p> z, *  fixed loci is actually a ho- 4z | hmtp 1o
antly contractible, ~ motopy equivalence X2 _~
- h
()
G

Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on the orbi-singularity where they take values in 2-Cohomotopy:

Z
Zo 2
(E\)_ 77777777777 N (((:P% 222 *;***} ((CPS)ZQ =" 52
=7 L////

&* ¢ ~ ¢Z{ ltZQ - 2 T 2
d)l JH ~ H ~ R? (oo} X S > S
X - N 5’4 )(Z2 ****** > (5’4)22 — % charges in 2-Cohomotopy

. . . of B-field solitons

(227 Cl‘(l)arllfigﬁjlgn ( 27 charges localized on orbi-singularity on M5 orbi-singularity

Moduli space of worldvolume solitons. To be precise, the solitonic charges are to be measured in the reduced
2-Cohomotopy classified by pointed maps, enforcing the condition that solitonic fields vanish at infinity [44, §2.2].

In the strongly-coupled situation, where the M/ITA circle de-compactifies to R!, the vanishing-at-infinity must
also be applied here, whence the moduli space of topological solitons is the loop space of the reduced 2-Cohomotopy
moduli of the transverse space:

. . loop space of
moduli space of solitons Maps*/ (]R%J{oo} A Sl, SQ) ~ QMaps*/ (R%{oo}7 52) moduli space of solitons

on M5 orbi-singularity on D4 orbi-singularity

Outlook. Strinkingly, as we explain next,

L. . Computation Physics
this is equivalently a space of worldsheets E— A
of strings in R? with unit charged endpoints

i . . | Output Measure
forming oriented framed links! [99] (fusion)
B, @
Oy —CO—0
O—0 "0 _q O=—0
0—0 0 o o =0 Compute Braid
=0 o o0 &0 (apply gates) anyons
o—=0 - { == =0
o—0 *o 4 o O=0
0—0 L =Y O—0
O (i OO0 Initialize Create
o=—p—" ~© ° anyons
Such link diagrams are just the envisioned Vacuum
topological quantum circuit protocols, and
their framing regularizes the anyonic phase FIGURE 1. A single iteration of a topological quantum computation via braiding.

observables (“Wilson loop observables”). Figure from Rowell ([94], following [93, Fig. 2]).

4For brevity we consider here only “very good” orbifolds, namely global quotients of manifolds by the action of a finite group G.
This is sufficient for the present purpose and anyways the case understood by default in the string theory literature.



3 Cohomotopy charge of Solitons

Remarkably, there is an equivalence between Cohomotopy of spacetime/worldvolumes and Cobordism classes of
submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge [97, §2.2] [95, §2.1]:

The Pontrjagin theorem
[66][65, §IX] identifies the
unstable n-Cohomotopy of
a closed manifold with the

framed unstable
n-Cobordism of M4

assign Cohomotopy charge

N P n-Cohomotopy of M
directed asymptotic distance —s—

unstable

manifold (aka  scanning
map or Pontrjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighbourhood, else to co.

Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

Cobf, (M?) := NFramedSubmflds,_, (M), . ~ Maps (M9, 8"), = " (M?).
cobordism classes of its nor- /DrdSI  pre image of regular vatue 0 /hmtpy closed
. manifold
mally framed submanifolds ) )
‘ di . reconstruct submanifold from its charge
OI co-dimension n.
C
xdon M Ry = 57

Josed sul ifold. directed asymptotic distance from 2 P e -
The Cohomotopy Charge closed submantlold, manifold =~ cocycle representing Cohomotopy charge of £ Cohomotopy classifying space

normally framed (n-sphere)
of a normally framed sub- P e . A <

regular
value

Under this relation,

brane

anti-brane

of. [07, §4)).

suspension homomorphism —

homotopy of charge maps el 1. T - -
COI‘I‘eSpOHdS to nrml. framed in sP'dcz é g framing [ | [ | Il [ |
. sl &
cobordism of submnflds. 1E framing A@l\ \
The cobordism relation ex- =1 E charge \” )
1bi 1 2 © creation
hibits a form of pair cre- a . 1 1 1 ation / 1
. . . normal framing annihilation
ation/annihilation of sub- - : : ” []
manifolds carrying opposite branos anti-
brane
Cohomotopy charges. apacetime
Wh ki bi make more ambient spatial dimensions available to bordisms —
€n making more armpi- ) .
. . . d,0 d,0
ent dimensions available, the yd—n — ppd (L>Md x R! ¢>M‘1 W RZ Com M % R
cobordism classes eventually
uickly) exhibit stabiliza-  unstable c c ey stable
(quickly) exhi “a- e Cobfh (M) —% Cobt ! (M x RY) —% > Cobt 2 (MY x R2) = MEFr"(MI,) i
tion on abehan CObOrdlSm Cobordism Cobordism
. ‘ i
COh(;ItnOI?gty —EII'OUI;}S)/. . (THhtlS Cohomotopy charge map =~ ~ stable Pontrjagin-Thom isom.
might relate Hypothesis H to . . I
; ; ; wvte zn(pgd \ N snptonsd o mty YO S ord o w2 Sn (1 tabl
Vafa’s cobordism COnj@CtU’I"@ C(:;E:mot:py n (MCPI) T ((M xR )CPI) 7 ((M xR )CP() B S (MCPT) C()I:ofm:npy

This “linearized” Cohomo-
topy/Cobordism is a form
of K-theory: algebraic K-
theory over the “absolute
base field F1” (cf. [12, Thm.
5.9][7, Cor. 2.25]).

non-abelian

Cohomotopy
{ ]

s
(i.e.: stabilize)

stable

h
linearize Co Orr:Otopy Pontrjagin & Thom

algebraic K-theory of
“field with one element”

stable framed Thus flux quantization in Coho-
Cobordism

motopy lifts to M-theory the same
arguments that motivated topo-
logical K-theory in type II string
theory: its character map repro-
duces the Bianchi identities & its
equivalence relation models (anti-
)brane pair-creation/annihilation.

MFr*
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Moduli space of soliton configurations. But the Pontrjagin theorem concerns only the total cohomotopical
charge, identifying it with the net (anti-)brane content. Beyond that we have the whole moduli space of charges

(considered now specialized to our 2D 2-Cohomotopy

transverse space) and Segal’s the- nz,?dsléhtzeﬁze Maps*/ (R2 7 52) (-] 2 (Ra ) Hop, .
orem [105] says that the cohomo- ~ branme charges Joek net charge toed 'l‘ooji(;g"(mo
topy charge map (scanning map) iden- Segal |, Pontrjagin |, NI 7
tifies this with a moduli space of theorem theorem /7
brane positions, nam§ly with the group- nj)‘;ds';lﬁtii‘?ge G Conf(R?) (-] Cob2, (R?)

completed configuration space of points brane positions Cogrollp Cong net brane content oo

[13] [1 13] [40] Ibblet;d & Sp‘?ee (unstable)

where the configuration space of points
is the space of finite subsets of R? — here
understood as the space of positions of
cores of solitons of unit charge +1, | -

220 positions of

Conf(RQ) — J‘ﬁ“\%\m\‘-‘o ¥ \\'/ snlit\mll i'()l'os \;/
= \==4

and its group completion G(—) is the topological completion of the topological

. A . ... . . i Configurations of charged
partial monoid structure given by disjoint union of soliton configurations.

" o . . A ! . points ‘ strings
Naively this is given by including also anti-solitons in the form of configurations of
+-charged points, topologized such as to allow for their pair annihilation/creation Oo—0O eo—e
as shown in the left column on the right. §
Remarkably, closer analysis reveals [84] that the group completion G(—) produces O——e
configurations of strings (extending parallel to one axis in R?) with charged @) o §
endpoints whose pair annihilation/creation is smeared-out to string worldsheets § O ®
as shown in the right column. » §
This means [99] that the vacuum-to-vacuum soliton scattering processes, § O—e
forming the loop space 2 G Conf(R?), are identified with framed links ([85, pp 15]), > §
for instance ®
<3 L IS
O -8 _q O=—0
m 0=0 "0 o 0 s o
—C e o o =0

) o Pa— =0
o 8 PR Oo—0 tracing out
O—0 '_0—0‘ U_(,) ) worldlines worldsheets
{\_(,H o 5

e Y@ @l ) O—0O &
—0 [ — O=—0 .
o=0 oo =0 O—D—0
=0 e o=0
=0 oo O=0 O—‘
= &0 .o =0 ‘
o—Q ——o—» o—0 |
O——(p-—9 &———0 2] O_‘
O ——
¢ ] ©

@
subject to link cobordism (cf. [72]) &
S~ z : H’—‘. : 1 It follows [99, Thm 3.17] that the charge of a soliton
A e =0 v b scattering process L is the sum over crossings of the
N W —— ; 7Y = N -
TN | e >0 & e U0 crossing number # (;\) =41, # (/\‘> =1,
~ = e—e| which equals the linking+framing number:
~— | = . G~ ! ° S
) » ~ o —
AN Py » : o L QGConf(R?) — OMaps /(Rﬁ{m}Sz) —7m3(8?) ~7Z
— oo 0 ; total crossing number =
S Ly linking + framing number #L
T But this is precisely the Wilson loop observable
“nt o = oo e of L in (abelian) Chern-Simons theory! [99, §4]
S As we explain next.




4 The topological Quantum States

To summarize so far, we have seen that the topological sector of the flux-quantized phase space of solitons on
magnetized M5-probes ¥ wrapping Seifert orbi-singularities is

Lo
¥ CP3
Maps| |, | o~ Maps*/(Ra{oo} A St 52) ~ QGConf(R?) il 7o 2 GConf(R?) ~ Z
X st L "y

loop space of
group-completed
configuration space

topological sector
of flux-quantized
phase space

net
charge

2-Cohomotopy
cocycle space

The topological quantum states of this system now follow [98][99, §4] by general algebraic quantum theory:

The gauge-invariant topological observables Obs, := making a (star-)algebra under concatenation
form the (higher) homology of this space H, (Q GConf(R?); (C) (reversion) of loops — the Pontrjagin algebra.
QGConf(R?) loop :::C“‘"‘l Q GConf(R?) This means that time-reversal goes o
) Pontr. antipode ) along with reversal of looping around £
H, (QGConf(R?); C) ——7— He(2GConf(R?); C) the M/ITA-circle, whence we are deal-
of CMitian oo @l e e ing with a version of discrete light-cone
Quanty,, ub;lig;tljﬁ’; H (Q GConf(R2); (C) quantization in their topological sectors.

The basic ordinary (de- Obsy —> (C[’/TO (QGConf(R2))} = ClZ] Since these observables commute
gree:O) observables detect ) among each other, their pure tOpOlOg—
the deformation class of a  OF = Orz) = % cal quantum states are their (real &

framed link L. Or-0Op = orurL = Opr 441 positive) algebra homomorphisms:

homo

PureQStates, ~ {p : Obgg —— C ‘ pE MixedQStatesO}

on ('()llllllllfillg
observables

MixedQStates, := {p . Obsy 22, ¢ ‘ Y (p((’)*) = p(O)*, p(O*-0) >0 eR— (C) , p(1)y=1 }
O€Obs, reality (semi-)positivity normalization
Therefore pure topological states |m) / / accumulating to Obsg (m|—|m) C
are determined by an anyonic phase PN the exponentiated )
Tl
exp(mi/m) assigned to any crossing, x crossing number O +— em?hk

The resulting expectation values

(m|OL|m) = exp (Z#L) = exp (%( Z Ink(L;, L;) + Z frm(Li))>

- linking . framing
Z?SJEWO(L) Illllllh(‘;s ZET(O(L) Tlllll]})(!Y'S

are [99, §4] just those of Wilson loop observables in “spin” Chern-Simons theory, as expected for abelian anyons!

e (| (DI - Gl - e

—_——
Applying the GNS-construction to such state produces a 1-dimensional Hilbert space Cl8, 0*1]/(6”1/’” — 9) ~ C,
which is as expected for the quantum states of abelian Chern-Simons theory on R%{m}. (More on this on p 13.)

Remark. These solitonic anyons are not yet the controllable/parameterized defect anyons that could be used for
topological braid quantum gates operating by adiabatic movement of anyonic defects or (quasi-)holes. But the
latter arise as defect points among the former, we come to this on p. 14.
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Anyonic topological order on Flux-quantized M5-probes. We now identify the promised topological order
on Mb-probes flux-quantized in equivariant twistorial Cohomotopy, by considering M5s wrapping closed surfaces:

Anyonic quantum observables on closed surfaces. Zs Z,
Consider now a closed orientable surface ¥? of genus g € N ()
face 2, of gonus g FRO— RO x 32 x S' x RZ,

to replace the previous factor R% (oo} in the brane diagram:
Directly analogous analysis as before gives that the topological quantum observables on the flux-quantized self-
dual tensor field form the group algebra of the fundamental group of the 2-cohomotopy moduli space in the kth
connected component

Obso (¥2) = Hy (4 Maps(S2, 52); C) = C|mof Maps(¥2, 5%)] (3)

where k € N is the degree of the classifying maps, corresponding under the Pontrjagin theorem to a net number of
k (anti-)solitons on X2.

Theorem (using [39, Thm 1][67, Thm 1][60, Cor 7.6]). This group of 2-cohomotopy charge sectors is identified as
twice the integer Heisenberg group extension (cf. [69]) of Z*9 by Zo °:

moS%Maps (22, 52) ~ < (@, b, [n]) € Z9 X Z9 X Loy, =: 729

Ground state degeneracy. W, := (1,0,[0]) We Wy = W, - W,
Hence the observable group- . subject to the rela- ok

algebra Obs for g = 1, X2 = T2, Wy = (0,1,[0]) tions r=1

has generators ¢ = (0,0,[1]) [(,-]=0

This algebra is just the observable algebra expected [109, (5.28)] for anyonic topological order on the torus as

described by abelian Chern-Simons theory at level k. The unique non-trivial irrep has dimension &, this being the

expected ground state degeneracy on the torus: '
WaHnD = 62’””/’““n]>

Hilbert s f
quarfzﬁmi’;iié’s Hopo = Span(|[n]>,[n] eZW) € Obso(T?)Modules, dim(Hz2) = k,  Wy|n)) = |[n+1])
¢|n]) == em/k|[n])
Generally, writing (& € Ztgﬁ’:l Wi = (,0,[0)) ) Wo Wi = 69¢C W] W,
or the canonical basis vectors, i o . subject to ok
— . <i< =

the observable group-algebra Wy = (0.6,[0),1sis9g the relations ¢ 1
Obsg for general g has generators ¢ :=(0,0,[1)) all other commutators vanish

The non-trivial irrep #H, of this algebra has dimension |k|? as expected [75, p 40] for abelian anyonic topological
order on X2.

Hilbert space of X
quantum states Hzg € ObsO(Zg)Modules, dim (Hzg) = |k|g ,

on genus=g surface

Modular equivariance. Strikingly, in this construction modular MCG(52)
symmetry is manifest, since the looped mapping space is canon- — "
ically acted on by the mapping class group MCG of 2 (cf. [25, WoHomeos(Zi) ¢ o Maps (X2, S?)

§2.1]), simply by precomposition of maps! Inspection of the above 1125563 ]
theorem (cf. [39, bottom of p 153]) shows that this MCG-action ¢ 729

L . . . . 720 Sp2g(Z) Z
action identifies indeed as the canonical action of Sp,,(Z) on Z29.
Moreover, this modular action on quantum observables in- awlar orvabi®®

X . WO Eon oD% pates m € Spy,(Z)
duces a modular action on quantum states by compensating ackio™ T pd on P2g
intertwiners. For g = 1 one readily checks that these in- m(W) m(|[n]>) = m(W‘[nD) . VS W e 72
tertwiners are just the modular transformations known [75, Hn]> c
g

pp 65] from abelian Chern-Simons theory:

2

s(|im)) = jm[z]:e?’f”fl[m» 7(|inl)) = &% |[nl).

SHere Z,, := Z/(n) (with Zo = Z) are the (in-)finite cyclic groups.
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Quasi-hole defects via punctured worldvolumes. It is now immediate to bring adiabatically movable anyon
defects into the picture, namely “quasi-holes” in FQH jargon (cf. [109, pp 85]): points where solitons are absent.

To reflect this, we simply further generalize the surfaces 2 . w2 . P ———
2 . . . . gn — Egn\{sh Sn} e = -7

35 to their n-punctured versions obtained by deleting the ’ ’ P - o

positions of a subset of points — thus literally creating holes! for {s1,--s,} C 25 LT _

That these holes are indeed void of our dynamic solitons is elegantly 9 i 5
enforced by identifying all their positions with the point-at-infinity. ( an) ooy &8 RU{OO} ~ (X6,1)ufoc}

In this generality, our previous brane diagram now is: (Zz (Zzl
1,6. TR0 2 1 2

and, by the same argument as before, the alge- L= I x (29’”) Uooy X S X Rign

bra of topological quantum observables on co- /

homotopically flux-quantized fields becomes: Obsy (E?}n) == Hp (Qk Maps ((Zf,,n)u{oo}, 52)§ (C) .

RPRPRP A more explicit description of this algebra of observables may not be available at the

Q) moment. But we can immediately see that these are quantum observables on non-abelian

Y

1— Brn(gg) PN ’/T()HOIHGOSZI{ ((23 n)u{oo}) Y MCG(ZE) — 1 ([ In deducing this, we observed that
’ */ 2 ~ 2
Homeos™ ((£2 ) u{ec}) =~ Homeos(X2 )

mapping class group mapping class group . ! . g,n
of punctured surface of plain surface since (7)J{oo} is functorial on homeos.

Braid group action. This algebra of observables is faithfully acted on by the mapping
class group of the punctured surface — again simply by precomposition of maps.
But, with punctures, that group is now an extension (cf. [76, Thm. 3.13]) of the plain

mapping class group by the surface braid group moving the defects/holes around each
other!

—- braiding b —

surface braid group

Anyon-braiding on M5s as a quantum-gravitational effect.

Noting that the mapping class group is equivalently the group of )

large diffeomorphisms of the punctured surface (cf. [25, p 45]), = 7o lefeosor(EZTn)

we see that br.aiding of anyonic defects is reflected in eguipping t.he modulli Spaces v covariant Moduli (%)

of cohomotopical charges on the brane worldvolume with the action by diffeomor- ) ]

phisms, hence by passing to the action groupoid of moduli quotiented by diffeos. =~ Moduli(%) // Diffeos(%)
This is the hallmark of generally covariant systems (cf. [21]), such as our probe branes.

onomeosj’;r/ ((Eg,n)u{oo})

Solitonic vs. Defect anyons. By the
previous discussion we are to think of
Obsg(X2,,) as the quantum observables — anyons as seen

on abelian solitonic anyons propagating in Cohomotopy nature number braiding
on the punctured surface ¥2 . But the solitonic anvons| concentrations — net charge, by (LC-)time
(“adiabatic”) dependence of these ob- Y of flux density ~ CS-level: k evolution

servables on the external parameters of

punctures in by worldvolume

. s : 2
n qasi-hole positions make these collec- defect anyons| .0 o0 nin Xy, diffeomorphisms
tively represent non-abelian braiding of
punctures.
//__________________________________/’
s 7
‘ - AN
dynamic solitons v - y
flux-quantized - - y external!y
in Cohomotopy: e - (= - y pa{"ameterlzed
abelian anyons -7 , quasi-hole defects:
2l o y non-abelian anyons
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Conclusion — New theory of anyonic topological order, engineered on flux-quantized M5s. In summary,
we have seen that global completion by flux-quantization of 11D supergravity with M5-probes (here: in equivariant
twistorial cohomotopy — “Hypothesis H”), makes the quantized topological sector of the self-dual tensor field on
Mb5-probes (wrapping Seifert orbi-singularities) reproduce key phenomena of abelian Chern-Simons theory thought
of as an effective field theory for abelian anyons in fractional quantum Hall (FQH) systems:

(i) Flux tubes bound to anyons. The central assumption in the traditional heuristic understanding of
the FQHE is that the anyonic solitons have flux quanta “attached” to them [106, pp 883]. It is crucially this
assumption which motivates and justifies abelian Chern-Simons theory as an effective field theory for FQH anyons,
since variation of the sum of the abelian Chern-Simons term with the standard source term predicts that the gauge
field flux is localized at the source particles (cf. [109, (5.25)][114, (3.6)]).

pe
-
-
-

|
\
In contrast, in the approach discussed here 4 |

P2

this effect is a consequence of cohomo- i ! CIaSSffyi,lgm
topical flux-quantization, via the Pontrja- -1 /I\N
gin theorem: The classifying map of the 2- 1 ’\\l -
Cohomotopy charge identifies an open neigh- /‘/,\:. 1

bourhood of each anyon with the 2-sphere mi- /\/"« . P

nus its point at infinity, and the flux density W\
<~ worldline @iq.

F5 is the pullback of the sphere’s volume form N
along this map (cf. p 20), hence supported on Y Q*fd,,o/
~ “SE

2-sphere 52

~
~

just these open neighbourhoods. y

<

(0.9]

(ii) Anyons subject to each other’s Aharonov-Bohm phases.

Traditional discussion furthermore assumes from these attached flux tubes that the anyons must pick up
Aharonov-Bohm quantum phases when circling around each other. While this is plausible, rigorous quantum
field-theoretic derivation of this statement may not have found much attention.

In contrast, in the approach discussed here, this ef- o/ (2 . . v/ (2 )
fect is again a direct consequence of cohomotopical flux- moMaps (]Ru{oo}7 8% ) = moMaps (Ru{oo}’ B*Z)
quantization, now via algebro-topological theorems of Segal ¢ 12

and others, which serve to identify the cohomotopy charge Z same net charges. Z

moduli space with configuration spaces of solit.on cores, ﬂ'lMaps*/ (Rﬁ{w}v S2 ) H?TlMaps*/ (Rﬁ{oo}, BQZ)
whose fundamental group reflects the anyon braid phases N "

(and thereby also the ground state degeneracy / topological 71GConf(R?) ..but different moduli 1

order). config space no structure

Note how both these effects come about by changing the traditional
S2 ~ CP! ——— CP>® ~ B?7Z

flux-quantization of the Chern-Simons field from the classifying space 1st cell inclusion
for complex line bundles to just its first “cell”. This preserves the  classifying space classifying space for
for 2-Cohomotopy ordinary 2-cohomology

quantization of charges but makes their moduli exhibit anyonic effects.

(iii) Topological order. The traditional rigorous way of establishing topological order is by applying geometric
quantization to Wilson line observables, with

respect to some effective action, which is a choose prequantum line

somewhat convoluted process involving ad- bundle & polarization e,
hoc choices and regularizations phase ANy Hilbert kg
oc choices and regularizations. (E o space space g, %, g,
. . A0 o e, U U,
In contrast, in the approach discussed here S traditional quantization %’%% s,
the quantum observables obtain immediately, & “
without further choices, from the topological i
’ q topological
Ii . . . flux-quantized
ight-cone quantization of the flux-quanized observable
gauge fields . . .
topological light-cone quantization algebra

moduli space (as its Pontrjagin homology al-
gebra).
Here the looping € that drives this quantum dynamics reflects dependence of moduli on the M/IIA circle.(!)

(iv) Non-abelian defect anyons. The traditional hypothesis about defect anyons in FQH systems, embodied
by Laughlin- and Read & Moore wavefunction models, is that these are quasi-holes where the dynamical abelian
anyons are absent — but a derivation of this expectation from microscopic electron dynamics is missing (cf. [109,
83, 4]). In contrast, in the approach presented here, the non-abelian anyonic nature of quasi-hole defects follows
as a (modest) quantum-gravitational effect on the M5-worldvolumes, where it is the worldvolume diffeomorphism
symmetry that on punctured worldvolumes translates into the braid group action on the quantum state space.
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A Background on Homotopy Theory

Some notions used in the main text, to establish notation and give basic pointers to the literature.

Homotopy theory (cf. [107]). For fo, f1 : X — Y a pair of continuous maps between (topological) spaces a ho-
motopy n : fo = f1 is a continous deformation between them, namely a continuous map 7 : [0, 1] x X — Y such that

10,2) = fo(w), o, Forexemple, E -t 4 n:0 X% 5
denoted X \{Lﬁ)’ Y. square “homotopy- Q{ g lp means that 7(0, s) = p(b(s)),
n(1,2) = fi(z), i commutative diagram” X o B n(1,s) = c(e(s)).

(&
If one declares — and we do — to work in a “convenient” full sub-category of all topological spaces (such as

that of compactly generated or of Delta-generated topological spaces, cf. [41, p 21, 131]) then the topological space
Maps(X,Y) of all continuous maps X — Y satisfies the adjointness relation { P — Maps(X,Y)} ~ {PxX - Y}.
For P = [0, 1] this says that homotopies are equivalently paths in mapping spaces, and that homotopy-classes of
maps are the mapping spaces’ path-connected components: 7o Maps(X,Y) ~ Maps(X,Y)/nmep -

Since homotopies are maps themselves, there are homotopies-between-homotopies and ever higher-homotopies.

Thereby topological spaces constitute a cohomology || cocycle coboundary | higher coboundary

model for higher categorical symmetry /f\" e f\
namely for higher groupoids. As such, they homotopy x Lip| x I B | X "<3>n’ B
represent both cohomology as well as higher \?,} Y @ ;A

. . 6
gauge fields in the topological sector. physics field gauge transf. | higher gauge transf. | ...
In this vein, spaces are homotopy- ¥ . For example R™ ~ % in homotopy theory,
equivalent B ~ B’ if they are gauge- B B with 7° I= ?dB reflecting the fact that there is no non-

5 fog=ids

equivalent namely if we have maps trivial topological sector for fields on R™.

For actually computing homotopy classes of maps — hence cohomology, hence gauge-equivalence classes of fields
in the topological sector — tools from model category theory are indispensable, which largely say how to “absorb
homotopies into spaces” (cf. [32, §1]).

E.g., if p: A — Bis a Serre fibration, such as a fiber bundle, »o-b, g S € Cof »oby g

and X is a cell complez, such as a manifold, then sections-up- Q{ &4;’7 lp p € Fib % 7 l”
to-homotopy of p pulled back to ¥ are homotopy equivalent to B

plain sections: X — B /hmtp X — B /hmtp

This shows for instance that the twistor fibration is the classifying fibration for a twisted form of 2-Cohomotopy
over a brane worldvolume: Its homotopy-sections are equivalently plain sections, and hence locally maps to the
2-sphere fiber.

Pointed homotopy theory (cf. [57, §3]). To reflect the condition that solitonic fields are localized in that they
vanish at infinity we

- equip domain spaces X with a point at infinity, cox € X, so that X ——— B
- equip classifying spaces B with a point representing zero, Op € B, maps literally T T
- require maps f : (X,00x) — (B,0g) to respect these base points vanish at infinity {oox}.— {0s}.

For instance, to make fields on R™ vanish at infinity, we adjoin its would-be “point at infinity” to it (jargon:
“one-point compactification”) to obtain RG{OO} ~ S§™. On the other hand, if we want fields on some X without
a vanishing condition, we may adjoin a disjoint point-at-infinity, then pointed maps X} — B are ordinary

X = B. Eg.:

based loop space free loop space maps out of contractible
Maps*/(]Rb{oc}, B) = QB, Maps*/(S&,{Oo}, X)=:LB, Maps*/(Rlu{oo}, B) = B

Given a pair of pointed spaces (X, 00x), (Y, 00y ), in their product space X x Y any point should be regarded
as being at infinity which is so with respect to either factor space; this yields the smash product:

. XxY to which the sub-space Maps™/ (—, —) pntd %/ - pntd
XAY = {oox XY UXx{oov} of pointed maps is again adjoint: P Maps” (X,Y)} = {PAX v}

For example, S™ A S™ ~ Rﬁ{oo} A Rl’f{oo} ~ (R™ X R™) 00} = S™T™ 5o that for instance:

Maps*/(X ASY B) ~ Maps*/(Sl, Maps*/ (X, B)) = QMaps*/(X7 B).

6Beyond the topological sector, full higher gauge fields are still represented by maps X — B etc., only that now B is no longer just
a topological space but a “smooth co-stack”, cf. [27].
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B Background on TED Cohomotopy

Gauge potentials in twistorial Cohomotopy — and the Green-Schwarz mechanism.
Consider the fo dfs = 0 4 bi ;
Whitehead Lo.-algebra 3 hs dhs ga+ f2 f2 anc bigons
. ([ ,CP ) =Ry / , parameterized s ]
of thettvmstor fibration s o dgs = 0 like thi \ /
3 tm 1 g4 ike this:
Cp® = HP" ~ 57, 97 dgr 39494 i—

Theorem ([46, pp 23][47, §4.1]). Given a manifold U; (generically: a coordinate chart):

(0.) Closed I_,

CP3-valued differential forms are in natural bijection with lux densities of this form:

U"i o — id F, e Q3% (U;) | dFy, =0
(F3,Hs,G1,Gr) Py | Hy € QR(Ui) |dHs = G4 + B2 5
l T | Gae QiU | dGy =0
Qip (=51 CP%) | pocio=1d Gr € Qp(Uy) | dGy = 1G4 Gy
(1.) Given one of these, its set of coboundaries (null-concordances) naturally

retracts onto the set of gauge potentials of this form:

Ui = * Al € QdR(Ul) dA1 = F2
‘ ////’//7 PPN Pp1 B Q (]Z dB —H —C —A F
(Fa, Hs,Ga,G) Y (F2,H3,G4,G7) 0 s 2 € ( ) 2 3 3 1 B
l{ i1 Cs; € QdR(UZ) dC3 = G4
101 = id
QéR( ’ S4(CP3)clde> IQé ( ; S4CP3)clsd : Cs € QdR(UZ) dGe = G7 — %C'g Gy
ﬁg = tFy + dt Ay A = f[O,l] F
Hy == tHy + dtBy + (2 — )A P - By = [ (ﬁg, (o, E)E)
Gy, = tGy + dt Cs Cy = f[o . G
Gr = 2 2tdt S
G7 Gr + Cs Cs fo 1] (G7 (f[O,—] G4)G4)

(2.) Given a pair of these, the set of higher coboundaries (2nd-order concordances) between them naturally

retracts onto the set of gauge transformations of this form:

(Fb, H3, G4, Gr)

/_—\ oy € QgR(UZ) dOzO = A/l —A1
0 (I H) (Fp, H3,G4,G?) P2 ) B € Qur(Ui) | A1 = By — By + 72 + ag
e T | e € Q34U | dy2 = G5 —Cs
N prois = id 5 (77 R .
(Fy, B4, ) 75 € Qarll) 1435 =G = Co =5 O
FA\Q :tF2+th1+Sdt(A/l—A1) —dsdtao .
Hy = tHy + dt By + sdt (B, — By) — dsdt 0= Jsepo) Jre) 2
F (2 - DA+ (2 — O)s(A] — A Fy B1:= Jaepo Jeepoy ( = (Jrew, Fz)F2)
p — 2
+(t? = t)ds ap — V2= fse 0.1] fte[o 1 Ga
Cu = 1Ga +diCs +od{Ch - Cs) — dadtng ¥ = Juetoy retoy (G = (e G)C)
Gr = t2G7 + 2tdt Cs + 2stdt(C§ — Cs)
—272C3

—2dstdt(vys + 172 C3)

Notice the expression for flux density subject to an (abelian) Green-Schwarz mechanism: Hs = d By + A1 Fs + Cs .
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Proof. With the blue terms discarded, this is the statement of [46, pp 23][47, §4.1]. We compile the full argument:
To see that p; is well-defined:

- for C5, Cj this is [46, (70)],

- for Ay it works just as for Cs,

- for By we compute, in generalization of [47, below (138)], like this:

dB, = df, (ﬁg ~(fioy ﬁz)ﬁz)
_ L*{(fjg— ( f[oﬁ_}ﬁz,)ﬁz) . L;(ﬁg_ ( f[o,_]ﬁg)ﬁg) . f[ovl]d(flg— ( f[o’_}ﬁz)ﬁz)
Hs—A, Fy =0 Ga

= H3 —AlFQ — 03.

To see that i; is well-defined:
- for G4, G this is [46, (72)],

- for ﬁg it works just as for 64,
- for Hy we compute, in generalization of [47, further below (138)], as follows:
d(tHs + dt By + (12 — t) A1 Fb)
= dt H3 +tGy + tF5 1
— At Hy +dt Cs + At A, F)
+d((t? — )AL F)

= d<t2A41F2>

hence indeed: dHy = tGyq+ dtCy + (tFs + dt Ay) (LFs + dt Ay)

G 1 s s

Moreover, it is immediate from inspection that LIﬁg = Hj and Léf[g =0.
To see that p; o4y = id:
- for C3, Cp this is [46, below (72)],

- for Ay this works just as for Cj,

- for By we immediately compute:

Jom (s = (o 4 F2)B2) = [yt Bs = fig tA1dt Ay = By,
—_— v

By =0

To see that po is well-defined:
- for G4, Gy this is [46, (74-5)],

- for Py this works just as for Fs,
- for H 3 we compute, in generalization of [47, below (140)], as follows:
dpy dfse[(m] fte[o,l] (ﬁ3 - (ft’e[O,—] FA\2)FA\2)
= L= fte[o,u (ﬁS — ) =i fte[o,u (ﬁS —) - fse[o,l] dfte[o,l] (ﬁS —)
= fte[O,l] Ls=1 (ﬁ3 ) = fte[o,l] LZ:O(}?? ) = fse[O,l] LI:1(§3 =)+ fse[o,l] ftE[O,l] d(ﬁ?ﬁ -
= fte[O,l] (ﬁé - ) - fte[m] (ﬁ]?j - ) + (fse[O,l] ftE[O,l] f2)F2 + fse[m] fte[o,1] 54

= By—DBot+agFr+7.

To see that io is well-defined:
- for 79,75 this is [46, (76)],

- for aq this works just as for 7o,
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- for 8, we compute as follows:
Gy

d(tHs + dt By + sdt(B) — Bg) — dsdt 1) = tGq + dt C3 + sdt(Cy — C3) — dsdtye

+tF2F2 + thl F2 + Sdt(All —Al)FQ — detOZO F2

Py Fs

2 — )AL Fy + (t2 —t)s(A} — A F. -

a7 DA E (= s = A)E = 2 Fy Fy + 2tdt A Fy + 2tdt s(A, — Ay) + 2tdtdsag F
+ (tz — /,) ds ag Fy

—fFQ F2 — thl F2 — dtS(All —Al)FQ — (,1fd80[0 F2

d H3 = G4 + F2 F2 .
Moreover, it is immediate from inspection that ¢¥_yHs = Hs , ti_;Hs = Hj and ¢}, = 0, ¢;_; = Hs.

To see that ps 0io = id, we directly compute,
first

-~

fse[0,1]fte[o,1]G4 = fse[0,1]fte[0,1](_d3dt72) = 72

fse[o,l]fte[o,l]F2 = fse[o,1]fte[071](_d3dta0) = Qo
then

fsE[O,l]fte[O,l] <G7 - %(ﬁe'e[o,t]G‘l)G‘i) ~ 37205
— fse[o,l]fte[o,l]é7 — 3 feconSicpon (tCs + 5t(Ch — Cs) + tds72) (t Ga + dt Cs + sdt(Ch — Cs) — dsdt )

—57203

(75 + 372C3) —5C372 — 1(C5 = C3)ya + 572 C3 + 172 (C3 — C3) — 572 Cs

0
= 7

and analogously
fse[o,l] fte[o,u (ﬁt’e[o,—] FQ)FQ
= Jocion) Jrcpon) (EAL + st(A] — A1) + tds o) (t Fp + dt Ay + sdt(A] — Ay) — dsdtay)
= 410 + ;(A] — A1)ag — JaoAr — jao(A] — Ay)

=0

so that also 2 A a
fse[o,l]fte[o,u (H3 - (ft'e[o,—]FQ)F2> = fse[O,l]ftE[O,l](_dS dt 1) = B
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Cocycles in differential 2-Cohomotopy and the abelian Chern-Simons invariant on the 3-Sphere.
Notice that the Bianchi identities encoded by 2-Cohomotopy are the characteristic property of the abelian Chern-

Simons term:
= e Q2. (X dF, =0
CE(1S?) ~ Ry [fﬂ/<df2 0 > = QR(X;18%)  ~ 2 ar(X) 2
“ dHs = F, F

hs dhy = fafo H; € Qip(X)
We may bring this out more concretely: § o \g Ri{oo} o
Qo™ A -7 ~~ Loy Be 4,
Gauge-field configurations on R3? flux- f"‘\:‘/’/ (A1,Bs) ?If’(’ro;,y
. d . -C h d . h . L- (Fz,Hg) <====3zcaossdascoes O
quantized in 2-Cohomotopy and vanishing in Ol (= 15?) gauge potentials B [ 52
a neighbourhood of infinity are cocycles in dif- dR\ > clsd in diff. 2-Cohomotopy

ferential 2-Cohomotopy on Ri (oo} hence dashed \ %

homotopies as shown on the right [44, §3.3]. IQ}iR(—; [52)

Theorem. For each [n] € 72 (Rﬁ{m}) ~ Z this exists with Hs = 0 and [n] = [p5 Ay F5 the Chern-Simons invariant.

clsd

Lemma. On a smooth manifold 3, X NUNEEEEEE JQ}iR(*? [53)C1Sd

every cocycle « in rational 3-Cohomotopy Hs ™ /J

is represented by a globally defined differential form Hs, Q}iR(*; [53)Clsd m

Proof of the Lemma. Since [S3 ~ [B3Q this is just the degree=3 case of the statement that cocycles in de Rham
hyper-cohomology have global representatives on smooth manifolds (using partitions of unity). O

Proof of the Theorem. Stereographic projection provides a homeomorphism R? (oo} = S3 which is smooth away
from the point at infinity, which we may slightly deform to a smooth degree=1 map that is constant on a neigh-
bourhood of infinity. Since 72(S3) ~ m2(S3) ~ Z we may find a smooth map n : S — S2%, with compact support
away from the base point, so that R?U’ (oo} 5% 2, S? represents the charge [n].

Now the 2-cohomotopical character

map for charges on S3, shown in Ri{oo} — 3 ! Js3 L /52
black, factors as shown in blue (by | / \ /
naturality of rationalization), which n-dvolgs chgs chgo (4)
furthermore factors as shown in or- l I 1 (1n)
ange (by the above Lemma). Ol (115700 — JOUR (=3 15%) aea — JQLR (=3 152) a1sa
i)
3 3 n 2 Ui 2
Hence to get a differential RU{OO} — 5 ~__ o Is
cocycle as desired it is suf- n-dvolgs /
ficient to exhibit gauge po- T, @
. . (Fa,Hs=0) 07201 (. (g3 ch,
tentials (A7, B2) encoding dr (=3 18%)c1sa
a concordance filling the - f
. . (In)«om
diagram on the right
QéR(_§ [SQ)CISd 7 J‘QéR(_; [SQ)clsd

But, since H2,(5%) = 0, and by the Whitehead integral | A1 € Qig(S?) st dA; = F := n*dvolge
formula (cf. [38, p 134][9, p 228][29, pp 19]) there exists: By € 92,(5%) dBs; = n-dvolgs — A1 F
From this we get the the desired concordance: R

~ Fy, Hs)|i—o = (0,n - dvol

By = tF +dtA (F2, Ha)lemo = ( s¢)
(0,n-dvolgs) = (F»,0) : A (Fo, Hs)|i=1 = (F2,0)

Hg = (t — l)ndvolss + de BQ + (t2 — t)AlFQ . ~ ~ ~ ~

dFQZO,ngzFQFQ. O

Cartesian M5-Probes charged in Cohomotopy. The equations of motion for a(n orbifolded) cartesian M5-
probe demand that the flux Hs = const [47, Ex. 3.14], and thus its solitonic vanishing-at-infinity implies H3 = 0.
The above theorem says that such solutions still support non-vanishing cohomotopical charge, in fact that the
vanishing of Hs forces the charge to be carried by the Chern-Simons invariant of the auxiliary gauge field A; that
is brought in by the cohomotopical flux quantization.
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