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Abstract

These extended lecture notes survey a novel derivation of anyonic topological order (as seen in fractional
quantum Hall systems) on single magnetized M5-branes probing Seifert orbi-singularities (“geometric engineer-
ing” of anyons), which we motivate from fundamental open problems in the field of quantum computing.

The rigorous construction is non-Lagrangian and non-perturbative, based on previously neglected global
completion of the M5-brane’s tensor field by flux-quantization consistent with its non-linear self-duality and
its twisting by the bulk C-field. This exists only in little-studied non-abelian generalized cohomology theories,
notably in a twisted equivariant (and “twistorial”) form of unstable Cohomotopy (“Hypothesis H”).

As a result, topological quantum observables form Pontrjagin homology algebras of mapping spaces from the
orbi-fixed worldvolume into a classifying 2-sphere. Remarkably, results from algebraic topology imply from this
the quantum observables and modular functor of abelian Chern-Simons theory, as well as braid group actions
on defect anyons of the kind envisioned as hardware for topologically protected quantum gates.
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1 Motivation: Better Anyon Theory

While the hopes associated with the idea of quantum computing [104][59] are hard to over-state [52][10][118],
there are good arguments that commercial-value quantum computing will ultimately require quantum hardware
exhibiting anyonic topological order [164][131]. But microscopic theoretical derivations, from first principles, of
such anyonic quantum states in strongly-coupled quantum systems had remained sketchy, which may explain the
dearth of experimental realizations to date.

What we review here (based on [134][137][54]) is a rigorous theoretical account via “geometric engineering on
M-branes” subject to a previously neglected step of “flux-quantization” (the latter surveyed in [132]).

First, we expand on the motivation a little further:

Ultimate need for Topological Quantum Protection. Despite the fascinating reality of presently available
Noisy Intermediate-Scale Quantum computers (NISQ [116]) and despite the mid-term prospect of their stabiliza-
tion at the software-level via Quantum Error Correction (QEC [89][117], at heavy cost of available system scale),
serious arguments [77][30][87][31][32][68][51][150] and experience [22] suggest that large-scale quantum computa-
tion is hardly attainable by incremental optimization of NISQ architectures, but [23] 1 that more fundamental
quantum principles will need to be exploited – notably topological error protection already at the hardware-level
[82][46][141][140] in order to suppress quantum errors occurring in the first place.

Figure 1: Topological quantum. In
order to practically harness the computa-
tional power of quantum processes, quan-
tum states need to be stabilized against
decohering environmental noise. Apart
from using quantum error correction at
the software level, a plausibly necessary
way to do so is by using topological quan-
tum processes preventing quatum errors
right at the hardware level.

Quantum⇒
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While topological quantum protection is thus possibly indispensable for achieving commercial-value quantum com-
puting, its ambitious development, in theory and practice, is in fact far from mature, is in need of new ideas and of
further analysis, and leaves much room for development. Since this is not always made clear, to amplify this point:

(i) Theoretical challenges: While quantum theorists now routinely deal with the algebraic structure (namely:
braided fusion categories) commonly expected [83] to describe interaction of anyon species in toto, the mi-
croscopic first-principles understanding of the formation of anyonic topological order as solitonic states in the
many-body (electron) dynamics of quantummaterials has remained at most sketchy, even in the best-understood
case of the fractional quantum Hall effect [144], cf. [72]. 2

In fact, this is an instance of the general open problem of analytically establishing gapped bound states in
any strongly coupled/correlated quantum system: The problem of formulating non-perturbative quantum field
theory [6][34]. The analogous issue in particle physics (there called the Yang-Mills mass gap problem [105]) has
been recognized as being profound enough to be declared one of seven “Millennium Problems” [20].

(ii) Practical challenges: But without a robust theoretical prediction of anyonic solitons in actual quantum
materials, it remains unclear where and how to look for them. As an unfortunate result, experimentalists
have turned attention to mere stand-ins, such as “Majorana zero modes” at the ends of super/semi-conducting
nanowires ([81][94] which, even if the doubts about their detection were to be removed [24], are by construction
immobile and hence do not serve as hardware-protected quantum braid gates) and quantum-simulation of
anyons on NISQ architectures ([70][43, Fig. 5], which might serve as software-level QEC but again offers no
hardware-level protection.

1[23]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum
computer that can solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error
correction by using far-more-stable qubits, in an approach called topological quantum computing.”

2[72, p. 3]: “Though the Laughlin function very well approximates the true ground state at ν = 1/q, the physical mechanism of
related correlations and of the whole hierarchy of the FQHE remained, however, still obscure. [...] The so-called HH (Halperin–Haldane)
model of consecutive generations of Laughlin states of anyonic quasiparticle excitations from the preceding Laughlin state has been
abandoned early because of the rapid growth of the daughter quasiparticle size, which quickly exceeded the sample size. [...] the Halperin
multicomponent theory and of the CF model advanced the understanding of correlations in FQHE, however, on phenomenological level
only. CFs were assumed to be hypothetical quasi-particles consisting of electrons and flux quanta of an auxiliary fictitious magnetic
field pinned to them. The origin of this field and the manner of attachment of its flux quanta to electrons have been neither explained
nor discussed.”
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In short: Foundation and implementation of topological quantum computing as a plausible long-term pathway
to actual quantum value deserves and admits thorough re-investigation.

Concretely, the intrinsic tension haunting the traditional quantum computing paradigm is (cf. [17, p 272][150,
p 3]) that:

(i) quantum gates are implemented via interaction of subsystems,

(ii) while quantum coherence requires avoiding all interaction.

The idea of topological protection is to cut this Gordian knot by quantum gates operating without interaction.
The physical principle that allows this to work [3][4][46, p 6][110, p 50] is the quantum adiabatic theorem [120]:
Gapped quantum systems frozen at absolute zero in one of several ground states, but dependent on external
parameters, will defy interaction with noise quanta below the energy gap and yet have their ground state transformed
by sufficiently gentle tuning of the parameters: a holonomic quantum gate. This is topological if it is invariant under
local deformations of parameter paths, and thus protected also against classical noise. For an anyonic braid gate the
parameters in question are the positions of defects in a 2-dimensional transverse space within a quantum material.

Figure 2. The idea of topological quan-
tum gates by anyon braiding: Given an
effectively 2-dimensional quantum material
with point-like defects and degenerate ground
states, the quantum adiabatic theorem im-
plies that sufficiently slow (adiabatic) move-
ment of the defect positions around each other
(e.g. by externally tuning the material’s prop-
erties) entails a unitary transformation on the
Hilbert space of ground states. If these uni-
taries can be made to depend only on the ho-
motopy class of the defect paths relative their
endpoints, hence only on the braids formed by
their worldlines, then their operation is topo-
logically protected against noise in the oper-
ation of the gate.

transverse space

anyonic
defect

parameter
braiding

k
I

k
I

some quantum state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉 unitar
y adiab

atic transp
ort

∣∣ψ(t2)〉
another quantum state for

fixed defect positions
k1, k2, · · · at time t2

The remaining problem is to develop a precise mathematical theory describing these anyons.

Improved Anyon Models via Geometric Engineering on M-branes. A remarkable approach to the oth-
erwise elusive microscopic analysis of such strongly-coupled/correlated quantum systems emerges in the guise
of “geometric engineering” [80][13] of quantum fields on “M-branes” probing orbifold singularities, whereby the
given dynamics is (partially) mapped onto the fluctuations of Membranes (whence M-theory [28]), and of higher-
dimensional “M5-branes” [54], propagating within an auxiliary higher-dimensional gravitating spacetime orbifold
[124].

Figure 3: Geometric engineering of
quantum systems on M-branes provides
tools for analyzing otherwise elusive strongly
coupled/correlated quantum phenomena.
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This procedure is most famous in the (unrealistic) limit of large rank and hence of large numbers N → ∞ of
coincident such branes, where it extracts quantum correlators and quantum phase transitions entirely from classical
gravitational asymptotics (“holographic duality” [1]). The application to quantum materials [163][64] is now well-
studied, notably in the case of quantum critical superconductors engineered in M-theory [67][49][50][60][26][27][2].

But we have established [54][134][135][137] that after implementing a previously neglected step of “flux quantiza-
tion” [132] on the M5-brane worldvolume, there provably appear general solitonic and specifically anyonic quantum
states already in the more realistic situation of single (N = 1) coincident branes. (Similar results for N = 2 had
previously only been conjectured [18] by appeal to the expected but notoriously undefined effective quantum field
theory on coincident M5-branes.)

Moreover, in [138] we have proven that the resulting topological quantum states and their topological order
agrees in fine detail with the expectations for FQH systems as also predicted by abelian Chern-Simons theory, while
at the same time predicting that and how defect anyons in these systems may exhibit the much-desired non-abelian
braiding. It is these results that we survey in the present lecture notes.
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Figure 4:
Brane diagram for
geometric engineering
of anyons on single M5-
branes wrapping an orbi-
singularity [137].
It is a subtle mechanism
of flux-quantization [132]
of the self-dual tensor-
field on the M5 [54] that
stabilizes [134] its anyonic
soliton configurations.

M5-brane probe
worldvolume

2-brane worldvolume
hosting anyonic solitons

M-theory
circle

cone
orbifold

Σ1,5 = R1,0 × R2
∪{∞} × S1 × R2 � Z2

∞

anyon

worldline

× ×

Concretely, here we review and explain how this works, aimed at an audience assumed to be familiar with the
general mechanism of flux quantization as surveyed in [132].

But first to briefly recall the traditional theory of fractional quantum Hall anyons:

Quantum Hall effect (cf. [115][15][144][111]). In a very thin (atomic multi-layer) and hence effectively 2-
dimensional sheet Σ2 of (semi-)conducting material carrying magnetic flux density B, the energy of electron states
is (cf. [149, (4-12)]) quantized by Landau levels i ∈ N as

E = ℏωB

(
i+ 1

2

)
,

where each Landau level comprises of one state per magnetic flux quantum:

ndeg = B/Φ0 ,

and the Lorentz force on a longitudinal electron current Jx at filling fraction ν is compensated in equilibrium by
an electric Hall field

Ey = 1
ν Jx .

Integer quantum Hall effect. Therefore, Fermi’s theory of idealized free electrons predicts the system to be
a conductor away from the energy gaps between a completely filled and the next empty Landau level, hence away
from the number of electrons being integer multiples of the number of flux quanta, where longitudinal conductivity
should vanish.

nel = νB/Φ0 , ν ∈ N.
This is indeed observed — in fact, the vanishing conductivity is observed in sizeable neighborhoods of the critical
filling fractions (“Hall plateaux”, attributed to subtle disorder effects).

Fractional quantum Hall effect (FQHE). But in reality, the electrons are far from free. While there is little
theory for strongly interacting quantum systems, experiment shows that the Fermi idealization breaks down at low
enough temperature, where longitudinal conductivity also decreases in neighborhoods of certain fractional filling
factors ν.

ν ∈ Q, prominently for ν = 1/K , K ∈ 2N+ 1 .

The traditional heuristic idea is that at these filling fractions the interacting electrons each form a kind of bound
state with K flux quanta, making “composite bosons” (cf. [165]) that, as such, condense to produce an insulating
mass gap, even inside the Landau level.

Figure 5: Anyons in frac-
tional quantum Hall systems
(“quasi-holes”) are (vortices in
the electron gas corresponding to)
surplus magnetic flux quanta on
top of a state of exact rational fill-
ing fraction where each electron
is coupled/paired in some subtle
way to a fixed number of flux
quanta. Compare with Fig. 13.

un-paired
flux quantum:

quasi-hole

deficit of a
flux-quantum:
quasi-particle

K flux-quanta
bound to 1 electron:
composite boson

(cf. [144, Fig. 16])

Anyonic quasi-particles. This heuristic model suggests that in the Hall plateau neighborhood around such
filling fraction, there are unpaired flux quanta effectively “bound to” 1/Kth of a (missing) electron: called “quasi-
particles” (“quasi-holes”). These quasi-particles/holes evidently have fractional charge ±e/K and are expected to
be anyonic with fractional pair exchange phase eiπ/K . This phase has been experimentally observed [103].
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Effective abelian Chern-Simons theory. The traditional ansatz for an effective field theory description of
K-fractional quantum Hall systems postulates that the effective field is a 1-form potential a for the electric current
density 2-form J , itself minimally coupled to the quasi-hole current j, and with effective dynamics encoded by the
level = k = K/2 Chern-Simons (CS) Lagrangian [165][155]:

Electron current
density 2-form

J =
curre

nt 3-vec
tor

J⃗ ⌟
volum

e form

dvol =: d a Effective gauge field

Quasi-particle current
density 2-form

j = j⃗ ⌟ dvol

Background flux
density 2-form

F = dA External gauge field

Effective Lagrangian
density 3-form

L := K
2 a da︸︷︷︸

CS(a)

− Ada︸︷︷︸
AJ

+ a j [155, (2.11)]

Its Euler-Lagrange equations of motion

δL

δa
= 0 ⇔ J = 1

K

(
F − j

)
in the case of longitudinal electron current and static quasi-particles

J ≡ J0 dxdy − Jx dtdy

j ≡ j0 dxdy

F ≡ B dxdy − Ey dtdy

express just the hallmark properties of the FQHE that we saw above, at filling fraction ν = 1/K:

⇔


Jx = 1

KEy ⇔ Hall conductivity law at 1/K filling

J0 = 1
K B ⇔ each electron binds to k flux quanta, but

− 1
K j0 1/Kth electron missing for each quasi-hole .

Conceptual problems. However this can only be a local description on a single chart (as is common for Lan-
grangian field theories): Neither J nor F may admit global coboundaries a and A, respectively. Instead, both
must be subjected to some kind of flux-quantization. For F this must be classical Dirac charge quantization,
which however is incompatible with integrality of J when k ̸= 1 (cf. [158, p. 35][148, p 159]). But without this,
the implications break concerning topological order from abelian CS theory (ground state degeneracy, modular
functoriality, ...).

Therefore we must ask:

Question: Is there a non-Lagrangian theory for quasi-particles of properly flux-quantized FQH systems?

Answer: Yes!:

The main result to be discussed here is that the key features of the anyonic topological order as seen in fractional
quantum Hall systems are consistently, rigorously and naturally reflected by the topological light-cone quantization
of the self-dual tensor field on M5-brane probes of certain orbi-singularities in 11D supergravity — once the subtle
(non-abelian) flux-quantization of this field is properly taken care of, which is the key step that has not previously
received attention. This is what we explain below.

Further aspects. In fact, fractional quantum Hall systems exhibit further remarkable properties which have
not previously been reflected in their effective (Chern-Simons) descriptions, but which are naturally reflected in
the M5-brane model, among them hidden supersymemtry. We close this introduction by briefly indicating this
phenomenon.

N-Electron ground states of quantum Hall systems. While a microscopic derivation of fractional quantum
Hall ground states Ψ remains missing, phenomenologically successful Ansätze exist:3

• At odd filling fraction ν = 1/q, q ∈ 2N+ 1, the Laughlin wavefunction

ΨLa

(
z1, · · · , zN

)
:=

∏
i<j

(
zi − zj

)q
exp

(
− 1

ℓ2B

∑
i

∣∣zi∣∣2 )
3For N electrons in an effectively 2D material, and assumed to be completely spin-polarized by the transverse magnetic field, their

wavefunction Ψ is a skew-symmetric (by Pauli exclusion) C-valued function of N complex numbers (zi ∈ C)Ni=1. We omit normaliztion.
For the Read-Moore state N must (for Pf(−) to be defined) be even (which is harmless since N is a macroscopic number of electrons).
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• At even filling fraction ν = 1/q, q ∈ 2N, the Read-Moore wavefunction

ΨRM

(
z1, · · · , zN

)
:= Pf

(
1

z•
1−z•

2

)
ΨLa(z

1, · · · zN ) .

Here the Pfaffian Pf of a skew-symmetric N×N matrix A is the Bererzinian integral over anti-commuting variables
(θi)Ni=1:

Pf(A) :=
∫ (∏

idθ
i
)

pick coefficient of
top θ-power

exp
(
1
2Aij θ

iθj
)
.

Hidden super-geometry of quantum Hall systems. This suggests to promote the plane C1 to the super-space
C1|1 with its super-translation group structure

(z, θ) + (z′, θ′) =
(
z + z′ + θθ′, θ + θ′

)
Here the super-Laughlin state exhibits the Read-Moore state as a super-partner to the Laughlin state (up to
normalization) [65][58, (13)]:

ΨsLa

(
(z1, θ1), · · · , (zN , θN )

)
:=

∏
i<j

(
zi − zj − θiθj

)q
exp

(
− 1

ℓ2B

∑
i

∣∣zi∣∣2 )
ΨsLa

Laughlin state
fermionic for odd q

ΨLa ΨRM
Moore-Read state
fermionic for even q

super-
Laughlin state

0←[ θ
lowest component ∫ ∏

i dθ
i

top component

Collective excitations. The Moore-Read state is known to have two density-wave excitations for wave-vectors
k ∈ C:
(i) The magneto-roton state

ΨMR,k(z
1, · · · , zN ) :=

∑
i exp

(
− ik∂zi

)
exp

(
− i

2kz
i
)
ΨMR(z

1, · · · , zN )

(ii) The neutral fermion state

ΨNF,k which originally did not have a closed expression

However, lifting the magneto-roton state to super-space, for super-wavevector (k, κ) ∈ C1,1

ΨMR,(k,κ)(z
1, · · · , zN ) :=

∫ (∏
i dθ

i
)∑

i exp
(
− ik∂zi

)
exp

(
− i

2kz
i
)
exp

(
− i

2κθ
i
)
ΨsLa

(
(z1, θ1), · · · , (zN , θN )

)
it reproduces the magneto-roton state for even N , and the neutral fermion mode when an (N + 1)st electron is
added [58]:

ΨMR,(k,κ)

magneto-roton
state ΨMR,k κΨNF,k

neutral-fermion
mode

super-
density excitation

even Nno electr
on added

odd N

add an electron

Hidden super-symmetry in fractional quantum Hall systems. This super-unification predicts hidden
supersymmetry in fractional quantum Hall systems — which is indeed (numerically) observed [119][91] (also [5,
§5]).

This all suggests that an accurate model for fractional quantum Hall systems should in fact itself originate on
superspace, and this is what we start with now.
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2 Flux-Quantization on M5-Probes

The first task now is to understand the flux-quantization on M5-brane probes, according to [39][41][136]. We will
not (need to) explain in full detail the (super-)geometry of probe branes nor of their (super-)gravity backgrounds
(full discussion is in [53][54]), but do offer the following broad dictionary, for orientation: 4

M5-Brane probes (namely sigma-model branes, in contrast to black branes) are 5-dimensional objects propagating
in a gravitational target space X (the “bulk”), along trajectories that are modeled by (super-)immersions of their
6D (and N = (2, 0)) worldvolume (super-)manifolds Σ

probe M5-brane
(super-)worldvolume Σ1,5 | 2·8+ X1,10 | 32 target/background

(super-)spacetime
ϕs

trajectory
(super-)immersion

(1)

Here the admissible (“on-shell”, meaning: satisfying the appropriate equations of motion) immersions ϕs are
controlled by the (super-)geometry of X – namely the brane’s trajectory is subject to the gravitational- and
Lorentz-forces exerted by the field content of X – but X itself remains unaffected by the choice of ϕs – meaning
that the (gravitational) back-reaction of the brane on its ambient spacetime is neglected; this is what makes the
brane but a probe of the background X.

Thereby the probe brane (Σ, ϕs) plays a double role:

(i) on the one hand it is like a (higher-dimensional) fundamental particle, an “observer” of the bulk X in the sense
of mathematical relativity,

(ii) on the other hand it is itself a (super-)spacetime with its own (quantum) field content:

Remarkably, the magic of super-geometry makes such purely super-geometric immersions ϕs (1) embody not
just the näıve (temporal-)spatial worldvolume trajectory, but also a 3-flux density Hs

3 on Σ [54, §3.3]. This
is (on-shell) the notorious “self-dual” flux density whose accurate quantization (traditionally neglected) is our
main concern here.

This second aspect is what we are concerned with for the purpose of modeling strongly-coupled quantum systems:
The (1+3)D worldvolume M1,3 of a quantum material – or, for the intent of modeling anyons, the effectively
(1 + 2)D-worldvolume M1,2 of a sheet-like material (e.g. an atomic mono-layer akin to graphene) – is to be
identified with a sub-quotient of the brane worldvolume, typically with a fixed locus (orbifold singularity) inside
the base of a fibration (Kaluza-Klein reduction).

M5-brane
worldvolume

ambient bulk
spacetime

Σ1,5 Y 1,10

M1,2 Σ1,4 X1,9

quantum material
worldvolume

D4-brane
worldvolume

ϕ

M/IIA-
fibration

orbi-
singularity

Their flux quantization (to recall from [132]) is then encoded in a choice of a fibration A p−→ B of classifying
spaces, subject to the constraint that the Bianchi identities for the (duality-symmetric) flux densities on bulk and
brane are the closure/flatness condition on lp-valued differential forms, where l(−) forms Whitehead L∞-algebras
of these classifying fibrations (dual to their minimal relative Sullivan model).

Given such a choice, the topological sector of the higher gauge fields on bulk and brane are given by maps from
the brane-immersion into the classifying fibration:

With these comments on perspective out of the way, the plan of this section are the following topics:

(i) Bianchi identities on magnetized M5-probes

(ii) Flux quantization in Twistorial Cohomotopy

(iii) Aside: Projective Spaces and their Fibrations

(iv) Orbi-worldvolumes and Equivariant charges

4All brane concepts we consider are well-defined and all conclusions have proofs – at no point do we rely on informal string theory
folklore beyond motivation.
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The first step of flux quantization is to identify the Bianchi identities satisfied by the flux densities:

Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent
space

R1,10 | 32

super-Minkowski

isom
(
R1,10 | 32)

super-Poincaré

so(1, 10)
Lorentz

with its super-invariant 1-forms (cf. [53, §2.1]):

CE
(
R1,10 | 32) ≃ Ω•dR

(
R1,10|32)li

super-transl. invar. forms

≃ Rd

[
(Ψα)32α=1

(Ea)10a=0

]/(
dΨα = 0

dEa =
(
ΨΓa Ψ

) ) .

Remarkably, the quartic Fierz identities entail that [25][102][53, Prop. 2.73]:

G0
4 := 1

2

(
ΨΓa1a2

Ψ
)
Ea1Ea2

G0
7 := 1

5!

(
ΨΓa1···a5

Ψ
)
Ea1 · · ·Ea5

 ∈ CE
(
R1,10 | 32)Spin(1,10)

fully super-invariant forms

satisfy :
dG0

4 = 0

dG0
7 = 1

2G
0
4G

0
4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X̃ ↠ X given by

(Ψα)32α=1

(Ea)10a=0(
Ωab = −Ωba

)10
a,b=0

 ∈ Ω1
dR

(
X̃
) such that the

super-torsion
vanishes

dEa − Ωa
bE

b =
(
ΨΓa Ψ

)
,

and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:

Gs
4 := G4 + G0

4 := 1
4! (G4)a1···a4

Ea1 · · ·Ea4 + 1
2

(
ΨΓa1a2

Ψ
)
Ea1 Ea2

Gs
7 := G7 + G0

7 := 1
7! (G4)a1···a7

Ea1 · · ·Ea7 + 1
5!

(
ΨΓa1···a5

Ψ
)
Ea1 · · ·Ea5

Theorem [53, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (Gs
4, G

s
7):

The duality-symmetric
super-Bianchi identity

{
dGs

4 = 0

dGs
7 = 1

2 G
s
4G

s
4

}
is equivalent to

the full 11D SuGra
equations of motion!

The duality-symmetric
super-Bianchi identity

{
dGs

4 = 0

dGs
7 = 1

2 G
s
4G

s
4

}
is equivalent to

the full 11D SuGra
equations of motion!

Next, on the super-subspace R1,5 | 2·8+ R1,10 | 32ϕ0
fixed by the involution Γ012345 ∈ Pin+(1, 10) we have:

H0
3 := 0 ∈ CE

(
R1,5 | 2·8+

)Spin(1,5)
satisfies : dH0

3 = ϕ∗0G
0
4

To globalize this situation, say that a super-immersion Σ1,5 | 2·8+ X1,10 | 32ϕs
is 1/2BPS M5 if it is “locally

like” ϕ0, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

Hs
3 := H3 + H0

3 := 1
3! (H3)a1a2a3

ea1 ea2 ea3 + 0
(
ea<6 := ϕ∗sE

a
)
,

where we are highlighting that with H0
3 vanishing, by the above, the gravitino contribution to the superform

vanishes.
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Theorem [54, §3.3]: On a super-immersion ϕs with B-field super-flux Hs
3 :

The super-Bianchi identity
{
dHs

3 = ϕ∗sG
s
4

}
is equivalent to

the M5’s B-field
equations of motion.

The super-Bianchi identity
{
dHs

3 = ϕ∗sG
s
4

}
is equivalent to

the M5’s B-field
equations of motion.

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are implied: G4 ↔ G7 and H3 ↔ H3.

Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:

F 0
2 :=

(
ψ ψ

)
= 0 ∈ CE

(
R1,5 | 2·8+

)Spin(1,5)
satisfies : dF 0

2 = 0

Globalizing this to Σ1,5 | 2·8+ via

F s
2 := F2 + F s

2 := 1
2 (F2)a1a2

ea1ea2 + 0

we have on top of the above:

Theorem [137, p 7]:

The super-Bianchi identity
{
dF s

2 = 0
}

is equivalent to
the Chern-Simons
E.O.M.: F2 = 0.

The super-Bianchi identity
{
dF s

2 = 0
}

is equivalent to
the Chern-Simons
E.O.M.: F2 = 0.

Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan ge-
ometry locally modeled on the 11D super-Minkowski spacetime R1,10 | 32 entails that on-shell 11D supergravity
probed by magnetized 1/2BPS M5-branes implies and is entirely governed by these Bianchi identities on super-flux
densities:

A-field dF s
2 = 0 dGs

4 = 0 C-field

self-dual
B-field

dHs
3 = ϕ∗sG

s
4 + θ F s

2 F
s
2 dGs

7 = 1
2G

s
4G

s
4

dual
C-field

M5 probe Σ1,5 | 2·8+ X1,10 | 32
SuGra bulk

ϕs

1/2BPS immersion

(2)

Here we have observed that the Green-Schwarz term F s
2F

s
2 may equivalently be included for any theta-angle θ ∈ R

without affecting the equations of motion (since, recall, the CS e.o.m. F s
2 = 0 is already implied by dF s

2 = 0).

However, non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global
solitonic and torsion charges of the fields. The choice of flux quantization according to Hypothesis H [39][41] is the
following:

Admissible fibrations of classifying spaces for cohomology theories with the above character images (2).
The homotopy quotient of S7 is

(i) for θ = 0 by the trivial action and
(ii) for θ ̸= 0 by the principal action of the complex Hopf fibration.

θ = 0 S7�
0
U(1) S7 × CP∞ S7 HP 1

θ ̸= 0 S7�U(1) CP 3 HP 1

≃ hH

H-Hopf fibration

C-Hopf fibration

∼ tH

Twistor fibration

Proof. This may be seen as follows [41, Lem. 2.13]:
Since the real cohomology of projective space is a truncated polynomial algebra,

H•
(
CPn; R

)
≃ R

[deg=2︷︸︸︷
c1

]/
(cn+1

1 ) H•
(≃BU(1)︷ ︸︸ ︷
CP∞; R

)
≃ R[c1]

H•
(
HPn; R

)
≃ R

[
1
2p1︸︷︷︸

deg=4

]/
(pn+1

1 ) H•
(
HP∞︸ ︷︷ ︸

≃ BSp(1) ≃ BSU(2)

≃ BSpin(3)

; R
)

≃ R[ 12p1] ,

the minimal dgc-algebra model for CPn needs a closed generator f2 to span the cohomology and a generator
h2n+1 in order to truncate it; analogously for HPn. Since these generators also form a graded linear basis for the
rationalized homotopy groups of these spaces, they give the minimal Sullivan models (cf [132, Prop. 3.7]):
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CE
(
lCPn

)
≃ Rd

[
f2

h2n+1

]/(
d f2 = 0

dh2n+1 = (f2)
n+1

)

CE
(
lHPn

)
≃ Rd

[
g4

g4n+3

]/(
d g4 = 0

d g4n+3 = (g4)
n+1

)
.

Furthermore, since the second Chern class of a U(1) ≃ S
(
U(1)2

)
⊂ SU(2)-bundle is minus the cup square of the

first Chern class (by the Whitney sum rule), so that (cf. [126, (216)])

CP 3 CP∞ BU(1) −(c1)
2

HP 1 HP∞ BSU(2) 1
2p1 = c2 ,

tH

≃

B(c7→diag(c,c∗))

≃

the minimal model of CP 3 relative to that of HP 1 ≃ S4 (cf. [42, Prop. 4.24]) needs to adjoin to the latter not only
f2 but also a generator h3 imposing this relation in cohomology, whence it must be

CE
(
l
HP1CP 3

)
≃ Rd


f2
h3
g4
g7

/
d f2 = 0

dh3 = g4 + f2f2
d g4 = 0

d g7 = 1
2g4 g4

 ,

which is clearly quasi-isomorphic to CE(lCP 3). □

The resulting fibration of L∞-algebras is manifestly just that classifying the desired Bianchi identities (2)
(we are showing the case θ ̸= 0, which by isomorphic rescaling may be taken to be θ = 1):

Σ6 Ω1
dR

(
−; l

HP1CP 3
)
clsd

Ω•dR
(
Σ6

)
CE

(
l
HP1CP 3

) F2

H3

∈ Ω•dR(Σ
6)

∣∣∣∣∣ dF2 = 0

dH3 = G4 + F2 F2

⇔ ⇔

Σ11 Ω1
dR

(
−; lHP 1

)
clsd

Ω•dR(X
11) CE(lHP 1)

G4

G7

∈ Ω•dR
(
X11

)∣∣∣∣∣ dG4 = 0

dG7 = 1
2G4G4

ϕ (l tH)∗ ϕ∗ (l tH)
∗

Aside: Projective Spaces and their Fibrations – Herse we used the following classical facts. Consider:

division algebras R ↪−→ C ↪−→ H generically denoted K ∈
{
R, C, H

}
groups of units K× := K \ {0} understood with the multiplicative group structure

projective spaces KPn :=
(
Kn+1 \ {0}

)/
K×

higher spheres Sn ≃
(
Rn+1 \ {0}

)
/R>0

K-Hopf fibrations are the quotient co-projections induced by ι : R
>0
↪−→ K

The classical Hopf fibrations hK are:

S0 ≃ R×/R
>0

S1
(
R2\{0}

)/
R>0

S1
(
R2\{0}

)/
R×︸ ︷︷ ︸

RP 1

ker

≃
hR ι∗

≃

S1 ≃ C×/R
>0

S3
(
C2\{0}

)/
R>0

S2
(
C2\{0}

)/
C×︸ ︷︷ ︸

CP 1

ker

≃
hC ι∗

≃

S3 ≃ H×/R
>0

S7
(
H2\{0}

)/
R>0

S4
(
H2\{0}

)/
H×︸ ︷︷ ︸

HP 1

ker

≃
hH ι∗

≃

10



The Hopf fibrations in higher dimensions are the attaching
maps exhibiting the topological cell-complex structure of
projective spaces [106], from which the (cellular) cohomol-
ogy follows readily.

S
(
Kn+1

)
∗

KPn KPn+1

hK
(po)

Further factor-fibrations arise by factoring the Hopf fibra-
tions via the stage-wise quotienting along

R
>0
↪−→ R ↪−→ C ↪−→ H.

Notably, the classical quaternionic Hopf fibration hH fac-
tors through a higher-dimensional complex Hopf fibration
followed by the Calabi-Penrose twistor fibration tH [41,
§2].

Equivariantization: Since the quotienting is by right actions,
these fibrations are equivariant under the left action of

Spin(5) ≃ Sp(2) :=
{
g ∈ GL2(H)

∣∣ g† · g = e
}
.

S1 C×/R>0

S7
(
H2\{0}

)/
R

>0

S2 H×/C×

CP 3
(
H2\{0}

)/
C×

HP 1
(
H2\{0}

)/
H×

≃

≃

hC
complex

Hopf fibration

quaternionic
Hopf fibration

hH

≃

≃

tH
Calabi-Penrose
twistor fibration

≃

For example, the involution σ :=
[
0 1
1 0

]
∈ Sp(2)

swaps the two copies of H:

CP 3 HP 1(
H×H \{0}

)/
C×

(
H×H \{0}

)/
H×

(
H⊕H \{0}

)/
C×

(
H⊕H \{0}

)/
H×

CP 3 HP 1

tH

σ σ

tH

The resulting Z2-fixed locus is the 2-sphere:

(
CP 3

)Z2 ≃
(
H\{0}

)/
C× ≃ S2

(
HP 1

)Z2 ≃
(
H\{0}

)/
H× ≃ ∗

(tH)
Z2

This is the 2-sphere coefficient that will end up being responsible for stabilizing anyons on orbi-worldvolumes!
We next discuss how this comes about.

Aside: Implications of Hypothesis H, in view of traditional expectations for M-theory.

The plain Hypothesis H for the bulk theory says that the non-perturbative completion of the C-field in 11d
supergravity is a cocycle in differential Cohomotopy π̂4 [36, §4][56, §3.1][42, Ex. 9.3] and as such involves (exposition
in [132, §3.3]) a map χ from spacetime to the homotopy type of the 4-sphere, with the C-field gauge potentials

(Ĉ3, Ĉ6) exhibiting the flux densities (G4, G7) as R-rational representatives of χ.

(
Ĉ3, Ĉ6

)
full nonperturbative
11d SuGra C-field

canonical differential
non-abelian (unstable)

4-Cohomotopy

π̂4(X)

plain
non-abelian (unstable)

4-Cohomotopy

π4(X)

HdR

(
X; lS4

)
lS4-valued

de Rham cohomology

∈ χ

topological sector

(G4,G7)
flux

densities
Maps

(
X; S4

)
χCohomotopical

charge sector

7−→

Ω1
dR

(
X; lS4

)
clsd

SΩ1
dR

(
X; lS4

)
clsd

ch(χ) character
image(

G4, G7

)
C-field flux densities

7−→ η S(G4, G7)

ch

η
S

(Ĉ3,Ĉ
6)

gau
ge

pot
ent

ials
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As an immediate plausibility check, from the well-known homotopy groups of spheres in low degrees this implies
(cf. [69, (22-3)][126, (22)]):

• Integral quantization of charges carried by singular M5-brane branes (cf. the following (5)):

π4
(
R10,1 \ R5,1

)
= π4

(
R5,1 × R+ × S4

)
= π4(S4) = π4(S

4) = Z .
(3)

• Integral quantization of charges carried by singular M2-branes... plus a torsion-contribution (a first prediction
of Hypothesis H: fractional M2-branes):

π4
(
R10,1 \ R2,1

)
= π4

(
R2,1 × R+ × S7

)
= π4(S7) = π7(S

4) = Z ⊕ Z12 .
(4)

On the nature of the spheres. In itself, the 4-sphere S4 appearing in Hypothesis H is a classifying space, hence
an abstract tool of algebraic topology, not a physical space. On the other hand, once it is as such used for flux
quantization of the C-field of 11D supergravity, then every such field configuration relates the two.

In particular, when physical spacetime just so happens to itself be a product of a contractible space with a
physical 4-sphere — notably for spacetimes near M5-branes as in (3) — then there arises an effective identification
of the physical spatial sphere with the classifying space (cf. [69, p. 17][126, (22)][125]):

R1,5 × R1
+ × S4 S4 S4

near-horizont spacetime
of black M5-brane

(Poincaré patch of AdS7 × S4 )

spatial
4-sphere

classifying
4-sphere

pr2
∼

map classifying brane charge

homotopy
equivalent to

effective
classifying map

(5)

in that for a single M5-brane of unit charge the effective classifying map (on the right) is in the homotopy class
of the identity map from the spatial to the classifying 4-sphere. (A vaguely reminiscent kind of identification may
also be recognized in [71, p. 5-6][48, p. 5-6], there thought of as mediated by the scalar fields on the M5-brane.)

Directly analogous comments apply to the role of S7 and the near horizon spacetime geometry of M2-branes,
cf. (4).

Hypothesis H with curvature corrections. More generally, curvature corrections from the coupling to the
background gravity are postulated to be reflected in tangentially twisted 4-Cohomotopy [39], analogous to the
well-known twisting of the RR-field flux-quantization in K-theory by its background B-field:

Hypothesis K Hypothesis H

KU0�PU(H)

X9 BPU(H)

B2U(1)

twisted
K-theoryRR-fie

ld

twist bybackgroundB-field

∼

S4�Ŝp(2)

T 2 ×X8 BŜp(2)

BSpin(8)

twisted
Cohomotopy

Fivebrane structure

C-fiel
d

twist bybackgroundgravity

To distinguish M2/M5-charge, the tangential twisting needs to preserve the H-Hopf fibration ⇒ tangential
Sp(2) ↪→ Spin(8)-structure [39, §2.3]. With this, integrality of M2’s Page charge & anomaly-cancellation of the
M5’s Hopf-WZ term follows from trivialization of the Euler 8-class, which means lift to the Fivebrane 6-group

Ŝp(2) → Sp(2) [38, §4].

This implies [39, Prop. 3.13][38, Thm. 4.8]:

(i) half-integrally shifted quantization of M5-brane charge in curved backgrounds,

[G̃4] := [G4]︸︷︷︸
C-field
4-flux

+ 1
2

(
1
2p1(TX

8)︸ ︷︷ ︸
integral Spin-

Pontrjagin class

)
∈ H4

(
X8; Z

)
(6)
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(ii) integral quantization of the Page charge of M2-branes: 5

2[G̃7] := 2
(
[G7] +

1
2 [H3 ∧ G̃4]

)
∈ H7(X̂8;Z) (7)

Both of these quantization conditions on M-brane charge are thought to be crucial for M-theory to make any sense.
But, previously, item (i) had remained enigmatic and item (ii) had remained wide open.

But there is more:

Provable implications from Hypothesis H
of subtle effects expected in M-theory:



– half-integral shift of 4-flux [39, Prop. 3.13]

– DMW anomaly cancellation [39, Prop. 3.7]

– the C-field’s “integral EoM” [39, §3.6]
– M2 Page charge quantization [38, Thm. 4.8]

– integrality of 1
6 (G4)

3 [56, Rem. 2.9]

– M5-brane anomaly cancellation [125]

– non-abelian gerbe field on M5 [40]

It is these and further results that suggest that Hypothesis H goes towards the correct flux-quantization law for
the C-field in M-theory.

Yet more generally, Hypothesis H applies to orbifold spacetimes, where it postulates flux quantization in (twisted
and) equivariant Cohomotopy [123][14]. This is what we turn to next.

Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to orbifolds 6 by generalizing the
cohomology of the charges to equivariant cohomology [124]. In terms of classifying spaces this simply means that
all spaces are now equipped with the action of a finite group G and all maps are required to be G-equivariant.

We take G := Z2 and the classifying fibration to be the twistor fibration p := tH equivariant under swapping
the H-summands,

orbi-
worldvolume

Σ A : CP 3

orbi-
spacetime

X B : S4

G orbi-brane
charges

ϕ

G

p
equivariant
classifying
fibration...

Z2

tH
...for equivariant

twistorial Cohomotopy

G
orbi-bulk
charges G Z2

and the brane/bulk orbifold we take to be as on p. 3:

The orbi-brane diagram for a flat M5-brane
wrapped on a trivial Seifert-fibered orbi-singularity.
Shaded is the Z2-fixed locus/orbi-singularity.

We are adjoining the point at infinity to the space
R2

∪{∞} ≃
homeo

S2 which is thereby designated as

transverse to any worldvolume solitons to be mea-
sured in reduced cohomology.

Σ := R1,0 × R2
∪{∞} × S1 × R2

sgn

X := R1,0 × R2
∪{∞} × S1 × R2

sgn × R5

time
trnsvrs space
to solitons

M/IIA-
circle

orbi-
cone

trnsvrs space
to M5-brane

Z2

ϕ

Z2

Z2

Z2

But since the cone Z2 ↷ R2
sgn is equivariantly contractible, the inclusion of the Z2-fixed loci is actually a homotopy

equivalence

Z2 ∗ ∗∼
hmtp

Z2 ⇒
ΣZ2 Σ

XZ2 X

∼
hmtp

ϕZ2

Z2

ϕ

∼
hmtp

G

5On the right of (7), the “hat” in X̂8 indicates that this holds locally, namely on suitable fibration over spacetime (cf. [39, (116)][40,

p. 6]) on which the “M-theory 3-form” H3 is globally defined, which it cannot be on X8 unless G̃4 is cohomologically trivial (a basic
subtlety that has traditionally been glossed over in discussions of Page charge.) But in the present context of flux quantization on

M5-branes the analog of this extended spacetime is in fact the worldvolume of the M5-brane, restricted to which G̃4 does trivialize in
cohomology, whence we need not further dwell here on the definition of X̂8.

6For brevity we consider here only “very good” orbifolds, namely global quotients of manifolds by the action of a finite group G.
This is sufficient for the present purpose and anyways the case understood by default in the string theory literature.
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Therefore, our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on the orbi-singularity where they take values in 2-Cohomotopy:

Σ CP 3

X S4

Z2

ϕ

Z2

tH

Z2
charges on
orbifold Z2


≃


ΣZ2 (CP 3)Z2 S2

XZ2 (S4)Z2 ∗

ϕZ2 t
Z2
H

charges localized on orbi-singularity


≃

{
R2

∪{∞} × S1 S2

charges in 2-Cohomotopy
of B-field solitons

on M5 orbi-singularity

}

Moduli space of worldvolume solitons. To be precise, the solitonic charges are to be measured in the reduced
2-Cohomotopy classified by pointed maps, enforcing the condition that solitonic fields vanish at infinity [132, §2.2].
In the strongly-coupled situation, where the M/IIA circle de-compactifies to R1, the vanishing-at-infinity must also
be applied here, whence (cf. [133, §A.2]) the moduli space of topological solitons is the loop space of the reduced
2-Cohomotopy moduli of the transverse space:

Moduli space of solitons
on M5 orbi-singularity

Maps∗
(
R2

∪{∞} ∧ S
1, S2

)
ΩMaps∗

(
R2

∪{∞}, S
2
) Loop space of

moduli space of solitons
on D4 orbi-singularity

Maps∗
(
R2

∪{∞}, ΩS
2
)

≃

≃ ≃

(The algebraic topology of maps to ΩS2 have also found some attention in [99][100].)

Outlook. Strikingly, as we explain next, this moduli space is equivalently a space of worldsheets of strings in R3

with unit charged endpoints forming oriented framed links! [134]

Figure 6: Framed links as stringy world-
sheets are revealed by careful analysis as be-
ing the loops in the moduli space of solitonic
cohomotopy charges of the plane.

Such link diagrams are just the envisioned topological quantum circuit protocols, and their framing regularizes the
anyonic phase observables (“Wilson loop observables”).

Figure 7: Traditional protocol
for topological quantum compu-
tation with anyons, taken from
Rowell ([122], following [121, Fig. 2]).
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3 Cohomotopy Charge of Solitons

Remarkably, there is an equivalence between Cohomotopy of spacetime/worldvolumes and Cobordism classes of
submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge [126, §2.2] [123, §2.1]:

The Pontrjagin theorem
[114][85, §IX] identifies the
unstable n-Cohomotopy of
a closed manifold with the
cobordism classes of its nor-
mally framed submanifolds
of co-dimension n.

The Cohomotopy charge
of a normally framed sub-
manifold (aka scanning
map or Pontrjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighborhood, else to ∞.

Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

Under this relation,
homotopy of charge maps
corresponds to nrml. framed
cobordism of submnflds.

The cobordism relation ex-
hibits a form of pair cre-
ation/annihilation of sub-
manifolds carrying opposite
Cohomotopy charges.

normal
framing
in space

brane

opposite
normal
framing

anti-brane

normal framing
in spacetime

spacetime

p
a
ir

c
r
e
a
t
io

n

↼−−−−−−−−

−−−−−−−−⇁ an
n
ih

il
a
t
io

n

space

fframing
charge w w ⇌ f

creation /
annihilation

branes
anti-
brane

When making more ambi-
ent dimensions available, the
cobordism classes eventually
(quickly) exhibit stabiliza-
tion on abelian cobordism
cohomology groups. (This
might relate Hypothesis H to
Vafa’s cobordism conjecture
cf. [126, §4]).

This “linearized” Cohomo-
topy/Cobordism is a form
of K-theory: algebraic K-
theory over the “absolute
base field F1” (cf. [19, Thm.
5.9][9, Cor. 2.25]).

non-abelian
Cohomotopy

π•

stable
Cohomotopy

S•
stable framed
Cobordism

MFr•

KF •1
algebraic K-theory of

“field with one element”

linearize

(i.e.: stabilize) Barratt-Priddy

&
Quillen

Pontrjagin & Thom

Thus flux quantization in Coho-
motopy lifts to M-theory the same
arguments that motivated topo-
logical K-theory in type II string
theory: its character map repro-
duces the Bianchi identities & its
equivalence relation models (anti-
)brane pair-creation/annihilation.
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Moduli space of soliton configurations. But the Pontrjagin theorem concerns only the total cohomotopical
charge, identifying it with the net (anti-)brane content. Beyond that we have the whole moduli space of charges
(considered now specialized to our 2D transverse space), and Segal’s theorem [143] says that the cohomotopy
charge map (scanning map) identifies this with a moduli space of brane positions, namely with the group-completed
configuration space of points [21][157][79]:

Moduli space
of solitonic

brane charges
Maps∗

(
R2

∪{∞}, S
2
) 2-Cohomotopy

π2
(
R2

∪{∞}
)

Z
Moduli space
of solitonic

brane positions
G
group-

completed

Conf(R2)
config space

Cob2Fr(R2)
2-Cobordism
(unstable)

[−]

net charge

∼

Segal
theorem

∼

Hopf degreetheorem

∼

Pontrjagin
theorem

[−]

net brane content

∼

where the configuration space of points is the space of finite subsets of R2 – here understood as the space of positions
of cores of solitons of unit charge +1,

Conf(R2) =

 tran
sve

rse
plan

e positions of
soliton cores


and its group completion G(−) is the topological completion of the topological partial monoid structure given by
disjoint union of soliton configurations.

Näıvely this is given by also including anti-solitons in the form of configurations of ±-charged points, topolo-
gized such as to allow for their pair annihilation/creation as shown in the left column on the right.

Remarkably, closer analysis reveals [107] that the group completion G(−) produces configurations of strings
(extending parallel to one axis in R3) with charged endpoints whose pair annihilation/creation is smeared-out
to string worldsheets as shown in the right column ([134, Fig. 2]):

Figure 8: The continuous relations in
configuration spaces of charged points
and strings exhibit the pair annihilia-
tion/creation of oppositely charged (end-
)points.

Configurations of charged

points strings

∅

∅

tracing out

worldlines worldsheets

∅

∅
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This means (cf. [134, Prop. 3.14]) that the vacuum-to-vacuum soliton scattering processes, forming the
loop space ΩGConf(R2), are identified with framed links ([108, p 15]); for instance:

Figure 9: Loops in the configuration
space of charged strings in the plane may
be identified with (diagrams for) framed ori-
ented links.

subject to link cobordism (cf. [93]):

Figure 10: Link cobordism from
deformations of charged string
moduli. Shown on the right are
evident continuous deformations of
paths in the above configuration space
of charged strings, hence in the
group-completed configuration space
of points. Shown on the left are
the local deformations of correspond-
ing framed links, generating the rela-
tion of link cobordism.

It follows [134, Thm 3.17] that the charge of a soliton scattering process L is the sum over crossings of the
crossing number

#

( )
= +1 , #

( )
= −1 ,

which equals the linking+framing number:

ΩGConf(R2) ΩMaps∗/
(
R2

∪{∞}S
2
)

π3(S
2) ≃ Z

L #L

∼ [−]

total crossing number =

linking + framing number

But this is precisely the Wilson loop observable of L in (abelian) Chern-Simons theory! [134, §4]. This is
what we explain next.

The k-Soliton sector. More generally, we may consider loops based in the kth connected component of the
moduli space (cf. [134, Rem. 3.20]), corresponding to scattering process from k to k net number of solitons.

net charge k Hopf degree k

GConfk(R2) Maps∗k
(
R2

∪{∞}, S
2
)

GConf(R2) Maps∗
(
R2

∪{∞}, S
2
)

∼

∼

Since the double loop space Maps∗
(
R2

∪{∞}, S
2
)
admits the structure of a topological group, all these connected

components have the same homotopy type, and hence these scattering processes L are again classified by the integer
total crossing number #L which is the abelian Chern-Simons Wilson-loop observable.

Ωk GConf(R2)

π0Ωk GConf(R2) Z .

L 7→ #L

∼
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For instance, a generic k = 3 process looks like this:

and via the framed cobordism moves

it computes to the trivial scattering process accompanied by #L vacuum pair braiding processes:

Chern-Simons level. We will see below further meanings of the number lattice:

This integer K is equivalently

the number of fractional quasi-hole vortices in a quantum Hall system,
twice the level of their effective abelian Chern-Simons theory,
the maximal denominator for filling fractions of their quantum states.

Generally, we will recover in a novel non-Lagrangian way the features of quantum Chern-Simons theory that are
traditionally argued starting with the kth multiple of the local Lagrangian density a ∧ da for a gauge potential
1-form a.

The situation on the 2-Sphere. Furthermore, consider K solitons on the actual 2-sphere S2. Here, the 2-
Cohomotopy moduli space satisfies (cf. [62]):

π0ΩK Maps
(
S2, S2

)
≃ Z2|K| ,

and the long homotopy fiber sequence induced by point evaluation shows that the generator of this cyclic group is
again identified with the basic half-braiding operation:

Maps∗
(
R2

∪{∞}, S
2
)

Maps
(
S2, S2

)
S2

π2
(
S2

)︸ ︷︷ ︸
Z

π0ΩKMaps∗
(
R2

∪{∞}, S
2
)︸ ︷︷ ︸

Z

π0ΩKMaps
(
S2, S2

)︸ ︷︷ ︸
Z2|K|

π1
(
S2

)︸ ︷︷ ︸
1[ ]

fiber of...

point-
evaluation

2K

With flux-quantized fields being equipped with a classifying space A, there is a neat way to directly obtain the
topological quantum observables – via the following observation:

Topological flux observables in Yang-Mills theory – Theorem [133, §1]. For G-Yang-Mills theory on
R1,1 × Σ2, with a choice of Ad-invariant lattice Λ ⊂ g:

(i) Non-perturbative quantization of the algebra of flux observables through the closed surface Σ2 is given by the
group C∗-algebra C[−] of the Fréchet-Lie group of smooth maps Σ2 → G⋉ (g/Λ).

(ii) The corresponding group algebra of topological observables (observing only the connected components of flux)
coincides with the Pontrjagin homology algebra of pointed maps (R1 × Σ2)∪{∞} −−→ B

(
G⋉ (g/Λ)

)
:
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C
[
C∞

(
Σ2, G

)
⋉ C∞

(
Σ2, (g/Λ)

)]
Non-perturbative quantum algebra of

observables on flux through Σ2

C
[
H0

(
Σ2; G

)
⋉H1

(
Σ2; Λ

)]
corresponding algebra of
topological observables

H0

(
Maps∗((R1 × Σ2)∪{∞}, B(G⋉ (g/Λ)); C

)
Pontrjagin homology algebra of
moduli space of soliton charges

π0
≃

For example, in electromagnetism, with G = U(1) and Λ := Z ↪−→ R this gives [133, §2]:

C
[
H1(Σ2;Z)︸ ︷︷ ︸

electric

×H1(Σ2;Z)︸ ︷︷ ︸
magnetic

]
≃ H0

(
Maps∗((R1 × Σ2)∪{∞}, BU(1)×BU(1)︸ ︷︷ ︸

classifying space for
Dirac flux quantization

); C
)
.

This allows us to generalize [133, §3,4]:
Topological flux observables of any higher gauge theory. For a higher gauge theory flux-quantized in
A-cohomology, the quantum algebra of topological flux observables on a spacetime of the form R1,1 × ΣD−2 is
the Pontrjagin homology algebra of the soliton moduli, hence in deg = 0 is the group algebra of vacuum soliton
processes “on the light-cone”:

Obs• := H•

(
Maps∗((R1 × ΣD−2)∪{∞}, A); C

)
≃ H•

(
ΩMaps(ΣD−2, A); C

)
Obs0 = C

[
π0ΩMaps

(
ΣD−2, A

)]
For this, note that the star-involution is given by the combination of complex conjugation (time reversal) and loop
reversal (hence x-reversal), where R1,1 ≃ R⟨t, x⟩ , and the operator product is given by loop concatenation:

t

x

Σ



·



t

x

Σ



=



t

x

Σ



topological classes
of

vacuum-to-vacuum
processes of

quantized flux
along t− x

and their
concatenation

Figure 11: Vacuum-to-vacuum processes of flux and their consecutive evolution in light-cone time.
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4 The topological Quantum States

With the theory thus set up, we here turn to analyzing its predictions for topological quantum states and their
topological order to be observed on closed surfaces. Remarkably, we find close agreement with the fine-detail of
predictions of abelian Chern-Simons theory, even though the approach here is completely different (non-Lagrangian
but properly flux-quantized). Details of the following discussion are spelled out in [138, §3.1-4].

To summarize so far, we have seen that the topological sector of the flux-quantized phase space of solitons on
magnetized M5-probes Σ wrapping Seifert orbi-singularities is

Maps

Σ
↓
X
,
CP 3

↓
S4

Z2

Maps∗/
(
R2

∪{∞} ∧ S
1, S2

)
Ω0 GConf(R2) π0 Ω0 GConf(R2) Z

L #L
topological sector
of flux-quantized

phase space

2-Cohomotopy
cocycle space

loop space of
group-completed

configuration space

net
charge

≃ ≃ [−] ≃

The topological quantum states of this system now follow [133][134, §4] by general algebraic quantum theory:

The gauge-invariant topological observables form the (higher) homology of this space

Obs• := H•
(
Ω0 GConf(R2); C

)
making a (star-)algebra under concatenation (reversion) of loops — the Pontrjagin algebra.

Ω0 GConf(R2) Ω0 GConf(R2)

H•
(
Ω0 GConf(R2); C

)
H•

(
Ω0 GConf(R2); C

)
H•

(
Ω0 GConf(R2); C

)

rev

loop reversal

Hermitian conjugation
of quantum observables

rev∗

Pontr. antipode

(-) cmplx
cnjgtn

This means that time-reversal goes along with the reversal of looping around the M/IIA-circle, whence we are
dealing with a version of discrete light-cone quantization in their topological sectors.

Figure 12: Worldline of a particle trav-
elling around a compact dimension. In
the limit of high momentum/boost the parti-
cle travels on a compactified light-cone.

The basic ordinary (degree=0) observables detect the deformation class of a framed link L.

Obs0 C
[
π0

(
Ω0GConf(R2)

)]
C[Z]

OL := δ[L] = δ#L

OL · OL′ = δL⊔L′ = δ#L+#L′

∼ ∼

(8)

Since these observables commute among each other, their pure topological quantum states are their (real &
positive) algebra homomorphisms:

PureQStates0 ≃
on commuting
observables

{
ρ : Obs0

homo−−−−→ C
∣∣∣ ρ ∈ MixedQStates0

}

MixedQStates0 :=

{
ρ : Obs0

linear−−−−→ C
∣∣∣ ∀
O∈Obs•

(
ρ
(
O∗

)
= ρ(O)∗

reality

, ρ(O∗ ·O) ≥ 0 ∈ R ↪→ C
(semi-)positivity

)
, ρ(1) = 1
normalization

}
.

Therefore pure topological states |m⟩ are determined by an anyonic phase exp(πi/m) assigned to any crossing,
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accumulating to the exponentiated crossing number

Obs0 C

OL 7−→ e
πi
m#L

⟨m|−|m⟩

The resulting expectation values

⟨m|OL|m⟩ = exp
(
πi
m #L

)
= exp

(
πi
m

( ∑
i̸=j∈π0(L)

lnk(Li, Lj)
linking
numbers

+
∑

i∈π0(L)

frm(Li)
framing
numbers

))

are [134, §4] just those of Wilson loop observables in “spin” Chern-Simons theory, as expected for abelian
anyons! For example: 〈

m

∣∣∣∣∣ ++

+

∣∣∣∣∣m
〉

=

〈
m

∣∣∣∣∣
∣∣∣∣∣m

〉
= exp

(
πi 3

m

)
.

Applying the GNS-construction to such state produces a 1-dimensional Hilbert space
C[Z]︷ ︸︸ ︷

C[θ, θ−1]
/(
eπi/m − θ

)
≃ C , (9)

which is as expected for the quantum states of abelian Chern-Simons theory on R2
∪{∞}. (More on this on p 21.)

Remark. At this point, m ∈ R ̸= 0 may be irrational, but its rationality will be enforced by requiring compatibility
with states on more general domain surfaces, see p. 21 and p. 23.

Remark. These solitonic anyons are not yet the controllable/parameterized defect anyons that could be used for
topological braid quantum gates operating by adiabatic movement of anyonic defects or (quasi-)holes. But the
latter arise as defect points among the former, we come to this on p. 24.

Remark. The appearance of framed links along just the above lines is known in the condensed matter theory of
anyonic defect lines in the 3D “8-band model” ([45, pp 15], following [146]): From this perspective, the Cohomotopy
classifying space S2 plays the role of the classifying space for electron band Hamiltonians on a crystal lattice.

Anyonic topological order on Flux-quantized M5-probes. We now identify the promised topological order
on M5-probes flux-quantized in equivariant twistorial Cohomotopy, by considering M5s wrapping closed surfaces:

Anyonic quantum observables on closed surfaces. Consider now a closed orientable surface Σ2
g of genus

g ∈ N to replace the previous factor R2
∪{∞} in the brane diagram:

Σ1,5 := R1,0 × Σ2
g × S1 × R2

sgn

Z2 Z2

Directly analogous analysis as before gives that the topological quantum observables on the flux-quantized self-
dual tensor field form the group algebra of the fundamental group of the 2-cohomotopy moduli space in the Kth
connected component

Obs0
(
Σ2

g

)
:= H0

(
ΩK Maps

(
Σ2

g, S
2
)
; C

)
≃ C

[
π0ΩK Maps

(
Σ2

g, S
2
)]

, (10)

where K ∈ N is the degree of the classifying maps, corresponding under the Pontrjagin theorem to a net number
of K (anti-)solitons on Σ2

g.

Theorem (using [62, Thm 1][86, Thm 1][78, Cor 7.6]). This group of 2-cohomotopy charge sectors is identified as
twice the integer Heisenberg group extension (cf. [88]) of Z2g by Z2|K|:

7

π0ΩKMaps
(
Σ2

g, S
2
)

≃

(a⃗, b⃗, [n]) ∈ Zg × Zg × Z2|K| ,

(
a⃗, b⃗, [n]

)
·
(
a⃗′, b⃗′, [n′]

)
=(

a⃗+ a⃗′, b⃗+ b⃗′, [n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗ ]
)
 =: Ẑ2g

7Here Zn := Z/(n) (with Z0 = Z) are the (in-)finite cyclic groups.
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Ground state degeneracy. Hence the observable group-algebra Obs0 for g = 1, Σ2
1 = T 2, has generators

Wa := (1, 0, [0])

Wb := (0, 1, [0])

ζ := (0, 0, [1])


subject to the relations 

Wa ·Wb = ζ2Wb ·Wa

ζ2K = 1

[ζ,−] = 0

 .

This algebra is just the observable algebra expected [148, (5.28)] for anyonic topological order on the torus as
described by abelian “spin” Chern-Simons theory at lattice norm K and level k = K/2.

symbol in ordinary CS in “spin” CS exp
(
i
ℏSCS

)
=

CS level k ∈ N>0 ∈ 1
2N>0 e2πi k

∫
A dA

CS lattice K ≡ 2k ∈ 2N>0 ∈ N>0 eπiK
∫
A dA

(11)

The non-trivial irreps have:
– dimension K, this being the expected ground state degeneracy on the torus,

– are labeled by ν := p/K , p ∈ {1, 2, · · · ,K}, as expected for fractional filling factors.

Hilbert space of
quantum states
on the torus

HT 2 := Span
(∣∣[n]〉, [n] ∈ Z|K|

)
∈ Obs0(T

2)Modules , dim
(
HT 2

)
= K ,

Wa

∣∣[n]〉 := e2πinν
∣∣[n]〉

Wb

∣∣[n]〉 :=
∣∣[n+ 1]

〉
ζ
∣∣[n]〉 := eπiν

∣∣[n]〉 .
Modular equivariance. Strikingly, in this construction modular symmetry is manifest, since the looped

mapping space is canonically acted on by the mapping class group MCG of Σ2
g (cf. [33, §2.1]), simply by precom-

position of maps! Inspection of the above theorem (cf. [62, bottom of p 153]) shows that this MCG-action action

identifies indeed as the canonical action of Sp2g(Z) on Ẑ2g.

MCG(Σ2
g)︷ ︸︸ ︷

π0Homeosor
(
Σ2

g

)

↷ π0ΩK Maps
(
Σ2

g, S
2
)

Sp2g(Z) ↷ Ẑ2g

[33, §6.3] ≃

Hence, we may ask for a lift of the Ẑ2g action on quantum states to an action of the semidirect product

Ẑ2g ⋊ Sp2g(Z). For g = 1 and even K one readily checks that this gives the modular transformations of states
known [95, p 65] from abelian Chern-Simons theory:

modul
ar

actio
n on obse

rvab
les

m(W ) ·
and

on state
s

m(
∣∣[n]〉) = m

(
W

∣∣[n]〉) , ∀


m ∈ Sp2g(Z)

W ∈ Ẑ2g∣∣[n]〉 ∈ Hg

S
(∣∣[n]〉) = 1√

|K|

∑
[n̂]

e2πi
n n̂
K

∣∣[n̂]〉 , T
(∣∣[n]〉) = e

(
−πi/12+iπ

n2

K

)∣∣[n]〉 .
Generally, writing (e⃗i ∈ Zg)g1=1 for the canonical basis vectors, the observable group-algebra Obs0 for general g

has generators 
W i

a := (e⃗i, 0, [0])

W i
b := (0, e⃗j , [0])

ζ := (0, 0, [1])

, 1 ≤ i ≤ g


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subject to the relations 
W i

a ·W
j
b = δijζ2W j

b ·W i
a

ζ2K = 1

all other commutators vanish

 .

Requiring the reps Hg of this algebra to analogously support modular equivariance requires them to have dimension
|K|g — which is the result expected [95, p 40] for abelian topological order on Σ2

g:

Hilbert space of
quantum states

on genus=g surface
HΣ2

g
∈ Obs0(Σ

2
g)Modules , dim

(
HΣ2

g

)
= |K|g ,

Here, the generators W i
a,b correspond to the classical generators of the surface’s fundamental group. Oriented

closed surfaces are all obtained (cf. [47, p 100]) by identifying in the regular 4g-gon, for genus g ∈ N:

(i) all boundary vertices with a single point;
and, going clockwise for r ∈ {0, · · · , g − 1},

(iia) the (4r + 1)st boundary edge with the reverse of the
(4r + 3)rd,

(iib) the (4r+ 2)nd boundary edge with the reverse of the
(4r + 4)th.

sphere

Σ2
0 ≃ S2

torus

a

bΣ2
1 ≃ T2

2-
ho
le
d

to
ru
s

a1

b1

a2

b2

Σ2
2

In other words, the homotopy type of the surface sits in a (pointed) homotopy co-fiber sequence of this form:

S1
∨

g

(
S1
a ∨ S1

b

)
Σ2

g S2
∏

i[ai,bi] δ

whence its fundamental group is the quotient of the free group on 2g generators (ai, bi)
g
i=1 by the normal subgroup

generated by that polygon’s boundary:

π1
(
Σ2

g

)
≃

〈
a1, b1, · · · , ag, bg

〉/∏
i

[ai, bi]

2-Cohomotopy moduli of oriented closed surfaces. Mapping this co-fiber sequence into S2 and applying
π0ΩK , it collapses [62, Prop. 2] to twice [86, Thm 1] the integer Heisenberg central extension of Z2g by Z2|g|:

1 π0ΩK Maps
(
S2, S2

)︸ ︷︷ ︸
Z2|K|

π0ΩK Maps
(
Σ2

g, S
2
)︸ ︷︷ ︸

integer Heisenberg group

π0Ω∗Maps∗
(∨

g(S
1
a ∨ S1

b ), S
2
)︸ ︷︷ ︸

Z2g

1 .δ∗

The phase generators. Hence these integer Heisenberg groups inject into each other as the surfaces are surjected
onto each other by collapsing pairs of 1-cycles:

Σ2
g Σ2

g+1

π0ΩK Maps
(
Σ2

g, S
2
)

π0ΩK Maps
(
Σ2

g+1, S
2
)

Ẑ2g Ẑ2(g+1) .

p

≃

π1(p
∗,K)

≃

Thereby, their central generator ζ represents the previously identified half-braiding operation of solitons on
these surfaces. This is the “reason” for the central extension being by Z2|K| instead of just Z|K|:

The phase generator ζ does not correspond to full rotations (such as around the square on the right) but to
“particle exchange” by half-braiding — as expected for anyons.
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Σ2
0 ≃ S2

Wa

WbΣ2
1 ≃ T2

Z2|k| Ẑ2[ p
a
rtic

le
e
x
ch

a
n
g
e

]
7−→

p
h
a
se

g
e
n
e
ra

to
r

ζ 7→ eπiν

p

Non-orientable closed surfaces are all obtained by iden-
tifying in the regular 2h-gon, for crosscap number h ∈ N≥1:

(i) all boundary vertices with a single point and, going clock-
wise for r ∈ {0, · · · , h− 1},

(ii) the (2r + 1)st boundary edge with the reverse of the
(2r + 2)nd.

pr
oj
ec
ti
ve

pl
an
e

a

Σ2
1
= RP 2

K
le
in

b
o
tt
le

a

b

Σ2
2

In other words, the homotopy type of the surface sits in a (pointed) homotopy co-fiber sequence of this form:

S1
∨

h S
1 Σ2

h
S2

∏
i a

2
i δ

2-Cohomotopy moduli of non-orientable closed surfaces. Mapping this co-fiber sequence into S2 and
applying π0Ωk, it induces [62, Prop. 3] an extension of Zh−1 by Z2 which as such is trivial [86, Thm. 2]:

1 coker
((

Σ
∏

ia
2
i

)∗)︸ ︷︷ ︸
Z2

π0Ωk Maps∗
(
Σ2

h
, S2

)︸ ︷︷ ︸
Z2×Zh−1

ker
((∏

ia
2
i

)∗)︸ ︷︷ ︸
Zh−1

1 .δ∗

Again, the exponent appearing, h − 1, is just that expected for abelian Chern-Simons ground state degeneracy,
where (cf. [16, (73)]):

dim
(
HΣ2

h

)
= |k|h−1.

5 The topological Quantum Gates

Where the results of the previous §4 establish that on closed (non-punctured) surfaces the predictions of our theory
on solitonic anyons and topological order agree with the fine detail of those of abelian Chern-Simons theory, we
now analyze the corresponding predictions for punctured surfaces, and find that the punctures behave like possibly
non-abelian defect anyons. Details for the following material are spelled out in [138, §3.5-7].

Defects via punctured worldvolumes. It is now immediate to bring adiabatically movable defect anyons into
the picture, missing in traditional discussion but crucially needed for topological quantum gates (cf. [101, §3]).
Namely, we may simply further generalize the surfaces Σ2

g to their n-punctured versions, obtained by deleting the
positions of a subset of points – thus literally creating defects!

Σ2
g,n := Σ2

g,n \ {s1, · · · sn}

for {s1, · · · sn} ⊂ Σ2
g

s1
s2

s3

That these defects are void of the dynamical solitons is elegantly enforced by identifying all their positions with
the point-at-infinity (where, recall, the soliton’s very nature is to not be present):

domain for solitons in the presence of n defects =
one-point compactification of n-punctured surface

(
Σ2

g,n

)
∪{∞} e.g.: (Σ2

0,1)∪{∞} ≃ R2
∪{∞} .

In this generality, our previous brane diagram now is the following, with algebra of soliton quantum observables as
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shown, by the same kind of argument as before:

Σ1,6 := R1,0 ×
(
Σ2

g,n

)
∪{∞} × S1 × R2

sgn ,

Z2 Z2

⇝ Obs0
(
Σ2

g,n

)
:= H0

(
ΩK Maps∗

(
(Σ2

g,n)∪{∞}, S
2
)
; C

)
.

Braid group action. This algebra of observables is faithfully acted on by the
mapping class group of the punctured surface – again simply by precomposition
of maps.
But, with punctures, that group is now an extension (cf. [96, Thm. 3.13]) of the
plain mapping class group by the surface braid group that acts by (“adiabatically”)
moving the defects around each other!

1 −→ Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) −→ 1

surface braid group
mapping class group
of punctured surface

mapping class group
of plain surface

In deducing this, we used that Homeos∗
(
(Σ2

g,n)∪{∞}
)

≃ Homeos
(
Σ2

g,n

)
, since (−)∪{∞} is functorial on homeos.

Concretely, observe that the homotopy type of the one-point compactification of a punctured closed surface is
the wedge sum of the original surface with n− 1 circles (cf. [66, p 11], whose graphics we are adapting):

(
Σ2

g,n

)
∪{∞} ≃ Σ2

g ∨
∨
n−1

S1

puncture

pu
nc
tu
re

Σ2
0

(Σ2
0,2)∪{∞} =

Σ2
0 ∨ S1 =

∼

∼
∞

(12)

This means that the punctures are effectively topology changing defects (as such reminiscent of the genon-ic anyon
defects considered in [8]) and it implies that their bare quantum observables are (the group algebra) of:

π1Maps∗
((

Σ2
g,n

)
∪{∞}, S

2
)

≃ π1Maps∗
(
Σ2

g, S
2
)
× Zn−1 ≃

g=0
Zn , (13)

where on the right we recognize that associated with each of the n punctures is one copy of the braid phase
observable algebra (8) for the nearby solitonic anyons. This observable algebra of defects gets further enhanced by
the corresponding mapping class group:

Side-remark: Defect-braiding on M5s as a quantum-gravitational effect. Noting that the mapping class
group is equivalently the group of large diffeomorphisms of the punctured surface (cf. [33, p 45]),

π0Homeos∗or
(
(Σ2

g,n)∪{∞}
)

≃ π0 Diffeosor(Σ
2
g,n) , (14)

we see that braiding of anyonic defects is reflected in equipping the moduli spaces of cohomotopical charges on
the brane worldvolume with the action by diffeomorphisms, hence by passing to the action groupoid of moduli
quotiented by diffeos:

GnrlCovariantModuli(Σ) ≃ Moduli(Σ) � Diffeos(Σ) .

But this is the hallmark of generally covariant systems (cf. [29]), such as are our probe M5-branes.
Ultimately we are to consider surfaces Σ2

g,n,b that may feature b ∈ N boundary components, and then determine
the normal subgroup pure gauge diffeomorphisms inside (14) which are trivial on the boundary. The resulting
quotient group will be the (ADM/BSM-like) group of diffeos that serve in practice as experimentally observable
boundary charges.

Observables on soliton + defect anyons. So the covariantized quantum observables on the disk in the presence
of n defects is the group algebra of the subgroup of vanishing total framing of the spherical framed braid group [84],
namely of the wreath product Z ≀ Brn (cf. [11, §8]) of the soliton monodromy group Z with the actual braid group
Brn(Σ

2
0) of the defect anyons,

C
[ solito

nic anyon
s

Zn−1 ⋊
defec

t anyon
s

Brn
]

⊂ C
[
Zn ⋊ Brn

]
= C

[
Z ≀ Brn

]
= C

[
FBrn

]
, (15)
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where the braid group acts on Zn through permutation of the factors Symn of the defect anyons:

Zn ⋊ Brn(Σ
2
g) Zn ⋊ Symn ≃

{(
(ni)

n
i=1, σ

) ∣∣ ((n•), σ) · ((n′•), σ′) =
(
(n• + n′σ(•)), σσ

′)}. (16)

Just such para-statistical (cf. [153]) wreath-group statistics of defect anyons is seen in condensed matter [45].

Figure 13: Solitonic and de-
fect anyons from flux quan-
tized in cohomotopy. Compare
the similarity to the situation of
FQH anyons in Figure 5.

Anyons as seen
in Cohomotopy

Nature Number Braiding

Solitonic anyons
concentrations
of flux density

net charge,
CS-level: k

by (LC-)time
evolution

Defect anyons
punctures in
worldvolume

n in Σ2
g,n

by worldvolume
diffeomorphisms

field solitons/
quasi-particles/
-holes/vortices:

frmd submanifolds

flux-expelling defects:
punctures in the surface

Topologically protected rotation gates. The above action of Symn on Zn−1 ⊂ Cn−1 is the “standard repre-
sentation” of the symmetric group (the complement of the trivial 1d representation inside the defining permuation
representation)

HΣ2
0,1,n

≃ .

Via the cyclic subgroup Zn ⊂ Symn of cyclic permutations, this standard representation contains what in
quantum computing are known as qd it-based rotation gates [162]. For example, for n = 3 inspection readily
shows that the unitarized standard representation is generated from a Pauli Z-gate and a qbit-rotation around the
(conventional) y-axis, like this:

≃

{
(213) 7→

[
1 0
0 −1

]
︸ ︷︷ ︸

Z

, (231) 7→
[
cos(α) −sin(α)
sin(α) cos(α)

]
︸ ︷︷ ︸

Ry(2α)

where α = 4π/3

}
,

which implies at once that in the standard rep of Sym6 we find also the corresponding qbit-controlled

rotation, and so on.
Together with the global phase rotations of solitonic anyons given by the first wreath factor in (15), (controlled),

such rotation gates are the workhorse in the quantum Fourier transform [104, §5][152, §3.2.1] (hence notably in
Shor’s algorithm for prime faxctorization) and their precision and error protection is a major bottleneck in the
implementation of useful quantum algorithms (cf. [44, §III]).

Here we see that our geometric engineering predicts the relevant gates to have topologically error-protected
implementation by braiding of defects in FQH systems.

Figure 14: Topological rotation gates, obtained
by cyclic braiding of defect anyons, combined with the
global phase rotations given by braiding of solitonic
anyons, would provide intrinsically exact and topolog-
ically protected gates of the kind that make up the
quantum Fourier transform (in qdit-bases), and with
it many other quantum algorithms.

. . .

Side-remark: “Parastatistics” as the most stable anyon braid gates. Such braid representations on
irreps of the symmetric group have traditionally received little to no attention in topological quantum computing
(popular are instead solutions to the Knizhnik-Zamolodchikov equation, cf. [131], and of the Yang-Baxter equation).
Elsewhere they are discussed as speculative parastatistics [63][113] of fundamental particles instead of as adiabatic
Berry-transformations of defect anyons. Therefore Jordan 2010 [75], who is the first to propose symmetric irreps
as a model for quantum computation – aka permutational quantum computing [76] –, admitted “not [to] worry too
much about the physical justification for the model” [75, p 109].

This seems to be a blind spot in the literature: Irreps of Symn are in particular surface braid representations
via the surjection Brn(Σ

2
g) ↠ Symn — regarded as anyon braid gates they are in fact the most stabilized such, in

that the gate operation is independent not just of isotopy but even of homotopy of the adiabatic transformation.
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6 Conclusion: Better Anyon Theory

New theory of anyonic topological order, engineered on flux-quantized M5s. In summary, we have seen
that global completion by flux-quantization of 11D supergravity with M5-probes (here: in equivariant twistorial
cohomotopy – “Hypothesis H”), makes the quantized topological sector of the self-dual tensor field on M5-probes
(wrapping Seifert orbi-singularities) reproduce key phenomena of abelian Chern-Simons theory thought of as an
effective field theory for abelian anyons in fractional quantum Hall (FQH) systems:

(i) Flux tubes bound to anyons. The central assumption in the traditional heuristic understanding of the
FQHE is that the anyonic solitons have flux quanta “attached” to them [144, p 883]. It is crucially this assumption
that motivates and justifies abelian Chern-Simons theory as an effective field theory for FQH anyons, since variation
of the sum of the abelian Chern-Simons term with the standard source term predicts that the gauge field flux is
localized at the source particles (cf. [148, (5.25)][158, (3.6)]).

In contrast, in the present approach this
effect is a consequence of cohomo-
topical flux-quantization, via the Pon-
trjagin theorem: The classifying map of
the 2-Cohomotopy charge identifies an
open neighborhood of each anyon with the
2-sphere minus its point at infinity, and
the flux density F2 is the pullback of the
sphere’s volume form along this map (cf.
p 41), hence supported on just these open
neighborhoods.

classifying mapn

∞

anyon

worldline
fluxF
2 =
n ∗(dvolS 2)

2-sphere S2

Figure 15:
Anyon flux
quantized in
2-cohomotopy
via
Pontrjagin’s
theorem.

(ii) Anyons subject to each other’s Aharonov-Bohm phases. Traditional discussion furthermore assumes
from these attached flux tubes that the anyons must pick up Aharonov-Bohm quantum phases when circling around
each other. While this is plausible, rigorous quantum field-theoretic derivation of this statement may not have found
much attention.

In contrast, in the approach discussed here, this effect is again a direct consequence of cohomotopical flux-
quantization, now via algebro-topological theorems of Segal and others, which serve to identify the cohomotopy
charge moduli space with configuration spaces of soliton cores, whose fundamental group reflects the anyon braid
phases (and thereby also the ground state degeneracy / topological order).

π0Maps∗
(
R2

∪{∞}, S
2
)

π0Maps∗
(
R2

∪{∞}, B
2Z

)
Z Z

π1Maps∗
(
R2

∪{∞}, S
2
)

π1Maps∗
(
R2

∪{∞}, B
2Z

)
π1GConf(R2)

config space

1
no structure

∼

≃ ≃

same net charges...

≃ ≃

...but different moduli

Note how both these effects come about by changing the traditional flux-quantization of the Chern-Simons field
from the classifying space for complex line bundles to just its first “cell”. This preserves the quantization of charges
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but makes their moduli exhibit anyonic effects.

S2 ≃ CP 1 CP∞ ≃ B2Z
classifying space
for 2-Cohomotopy

classifying space for
ordinary 2-cohomology

1st cell inclusion

(iii) Topological order. The traditional way of establishing topological order is by applying geometric quanti-
zation to Wilson line observables, with respect to some effective action, which is a somewhat convoluted process
involving ad-hoc choices and regularizations. In contrast, in the approach discussed here, the quantum observables
obtain immediately, without further choices, from the topological light-cone quantization of the flux-quantized
moduli space (as its Pontrjagin homology algebra).

phase
space

Hilbert
space

flux-quantized
gauge fields

topological
observable
algebra

choose prequantum line
bundle & polarization

traditional quantization

choose & regularize
operators

to represent

topological light-cone quantization

cho
ose

effe
ctiv

e ac
tion

Here the looping Ωk that drives this quantum dynamics reflects dependence of moduli on the M/IIA circle.(!)

(iv) Defect anyons — as opposed to the solitonic anyons tracing out “Wilson lines” — seem to have previously
found little to no attention in quantum Hall theory in general and its effective abelian Chern-Simons theories in
particular. And yet, it is only such classically parameterized and hence, in principle, externally controllable defect
anyons which may support braid quantum gates as envisioned in topological quantum computation.

In our approach, defect braiding emerges just as readily as the solitonic anyons, as a mild kind of quantum
gravitational effect on M5-worldvolumes having a punctured surface factor space. This may be seen as a theoretical
prediction of defect anyons in quantum Hall systems which might inform future search for experimental realization.
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Summary of results:
On super-space, the equations of motion

of 11D supergravity with magnetic 1/2BPS M5-brane probes
are equivalent to these Bianchi identities on the super-flux densities:

A-field dF s
2 = 0 dGs

4 = 0 C-field

self-dual
B-field

dHs
3 = ϕ∗sG

s
4 + θ F s

2 F
s
2 dGs

7 = 1
2G

s
4G

s
4

dual
C-field

M5 probe Σ1,5 | 2·8+ X1,10 | 32
SuGra bulk

ϕs

1/2BPS immersion

One admissible choice of flux-quantization law (the simplest in number of CW cells)
is twistorial Cohomotopy, where the charges are classified by dashed maps like this:

M5-brane
worldvolume

Σ1,5 CP 3

bulk
spacetime

X1,10 S4

(a1,b2)
A- & B-field charge

ϕ

im
m
e
rsio

n

tH

(c3,c6)

C-field charge

For (very good) G ⊂ Sp(2)-orbifold domains, these maps are to be G-equivariant.

This flux-quantization implies a list of topological effects expected in M-theory.
⇒ Hypothesis H: This is the right choice of flux-quantization for M-theory.

Choosing (“engineering”) the M5-probe to be:

M5-brane probe
worldvolume

2-brane worldvolume
hosting anyonic solitons

M-theory
circle

cone
orbifold

Σ1,5 = R1,0 × Σ2
g,n × S1 × R2

sgn � Z2

∞

anyon

worldline

× ×

the moduli space of solitons becomes:

Moduli ≃ Maps∗
((

R1 × Σ2
g,n

)
∪{∞}, S

2
)

The algebra of topological quantum observables on theses solitons is:

Obs0 := H0

(
Maps∗

((
R1 × Σ2

g,n

)
∪{∞}, S

2
)
; C

)
≃ C

[
π1Maps∗

(
Σ2

g,n, S
2
)]
,

topological
quantum observables

Pontrjagin homology algebra group algebra

acted on by large diffeomorphisms (general covariance on the brane):

1 Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) 1

braid group large diffeomorphism group mapping class group

The corresponding topological quantum states:

on Σ2
0,0 = S2 reflect abelian braiding of solitonic anyons

on Σ2
g,0 = Σ2

1,0# · · ·#Σ2
1,0 have kg-fold degeneracy: topological order

on Σ2
1,0 = T2 exhibit irred SL2(Z)-modular equivariance

on Σ2
0,n = S2 \ {z1, · · · , zn} reflect abelian braiding of defect anyons

new & needed for
topological quantum gates!
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A broad lesson following immediately from our successful geometric engineering of topological qbits is the
plausible existence of more exotic anyonic states than traditionally envisioned: Namely the “duality symmetry”
[112][28, §6] of M-theory predicts that any geometrically engineered quantum system has “dual” incarnations with
isomorphic quantum observables but entirely different geometric realization, where ordinary space is replaced by
more abstract parameter spaces. Notably “T-duality” [151][37][55] applied to topological quantum materials has
been argued [97][98][61] to exchange the roles of ordinary space with that of reciprocal “momentum space”.

(2) Novel experimental pathways towards anyons. Indeed, while anyonic solitons are traditionally envisioned
as being localized in “position space” (meaning that the anyon cores are points in the plane of the crystal lattice)
the physical principle behind topological quantum gates — namely [3][4][46, p 6][110, p 50] the quantum adiabatic
theorem [120] — is unspecific to position space and only requires the material’s Hamiltonian to depend on any
continuous parameters (such as external voltage or strain) varying in any abstract parameter space.

The general physical conditions for
topological quantum gates given by the
quantum adiabatic theorem, listed (a) - (e) on
the right, are much more general than tradi-
tionally considered for anyon braid gates —
the latter are only the special case where the
parameters are configurations of points in the
plane of the 2D crystal lattice.

(a) Ground state degeneracy (when frozen at absolute zero, the system

still has more than one state to be in, even up to phase).

(b) Spectral gap (quanta of energy smaller than a given gap ϵ > 0 cannot

excite these ground states).

(c) Control parameters (the above properties hold for a range of contin-

uously tunable external parameters).

(d) Parameter topology (there exist closed parameter paths that cannot

be continuously contracted).

(e) Local invariance (continuously deformed parameter paths induce the

same transformation on ground states).

This means that, in principle, the possi-
bilities in which anyonic quantum states
could arise in the laboratory are far more
general than what has been explored to
date.
Concretely, a key example of alternative
parameters for ground states of a quantum
material are points in their reciprocal mo-
mentum space: This is the space of (quasi-
)momenta, hence of wave-vectors for plane
quasi-particle waves going through the
crystalline material.

duality

Position space:
a point is a position
on the crystal lattice

Momentum space:
a point is a plane wave
on the crystal lattice

We have observed before that candidate anyon-like solitons localized (not in position space but) in momentum
space are plausible both theoretically [131] as well as experimentally [161][147][74] and may have been hiding in
plain sight: as band nodes of (interacting) topological semimetals.

Indeed, momentum space naturally features key properties that are typi-
cally assumed for anyon braid gates but remain elusive in position space:

(i) toroidal base topology is routinely assumed [154][156][90] in order
to achieve the required ground-state degeneracy, but is quite unrealistic
in position space, even more so when meant to be punctured by defect
anyons — while the momentum space of a crystal is automatically a torus
(the Brillouin torus).

(ii) stable defect points need special engineering in position space but
arise automatically in momentum space in the guise of band nodes of
topological semi-metals [131, Fig. 6]

(iii) defect point movement in a controlled way is necessary for braid
gates but remains elusive in position space, while band nodes in momen-
tum space have already shown to be movable in a variety of systems, by
tuning of external parameters (e.g., strain).

The geometric engineering of anyons discussed here goes towards providing also fundamental theoretical under-
pinning of the possibility of more “exotic” anyon realizations than have traditionally been envisioned.
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7 Digest for Algebraic Topologists

We are concerned with algebro-topological phenomena arising when magnetic flux penetrates a semi-conducting
surface Σ2. The “gauge group” of the electromagnetic field is G ≡ U(1) and ordinarily such flux is classified by maps
to BU(1) ≃ CP∞. The following theorem turns the analysis of this situation first into a problem of differential
topology, and then into a problem of algebraic topology.

m
a
g
n
e
tic

fl
u
x

surfaceΣ 2

G Lie group (“gauge group”)

g its Lie algebra

C∞(-, -) manifold of smooth functions

(-)⋉ (-) semidirect product via adjoint

C[−] group convolution C∗-algebra

π0(−) path-connected components

soliton on X
= topological field configuration

that vanishes at the ends of X

⇒ classified by pointed map
X∪{∞} −→ BG
from one-point compactification

Theorem [133] (Yang-Mills flux quantum observables): For ordinary gauge fields on a spacetime ≃ R1,1×Σ2,
and for Λ ⊂ g an Ad-invariant lattice. the quantum observables of field flux through Σ2 form the group-
convolution C∗-algebra

C
[
C∞

(
Σ2, G⋉ (g/Λ)

)]
quantum flux observables

Commercial-value quantum computing will require robust quantum observables, insensitive to local fluctu-
ations, only depending on topological sectors of field configurations.

C∞
(
Σ2, G⋉ (g/Λ)

)
all quantum flux observables

π0 C
∞(

Σ2, G⋉ (g/Λ)
)

robust topological observables

[−]

Proposition [133] (topological sector observables): The topological flux quantum observables form the
homology Pontrjagin algebra of maps from space to classifying space. (shown now assuming Λ = 0, for simplicity):

Topological flux quantum observables

C
[
π0 C

∞(
Σ2, G

)]
≃ C

[
π0 Maps

(
Σ2, G

)]
≃ C

[
π1 Maps

(
Σ2, BG

)]
group algebra of fundamental group

of maps to classifying space

≃ H0

(
Maps∗(

(
R1 × Σ2

)
∪{∞}, BG); C

)
homology Pontrjagin algebra of

soliton moduli space

Example: C
[
π0 Maps

(
Σ2

g, U(1)
)]

≃ C
[
H1(Σ2

g; Z)
]
≃ C

[
Z2g

]
for Σ2

g an orientable surface of genus=g.

Effective flux of “fractional quantum Hall systems”(FQH). However, at very low temperature, experiment

suggests instead of Z2g its 2nd integer Heisenberg extension Ẑ2g

Ẑ2g :=
{(
a⃗, b⃗, n

)
∈ Zg × Zg × Z ,

(
a⃗, b⃗, n

)
·
(
a⃗′, b⃗′, n′

)
=

(
a⃗+ a⃗′, b⃗+ b⃗′, n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗

)}twice the unit
central extension

being the observables of an “effective Chern-Simons field”, where the center Z ↪→ Ẑ2g observes an anyon
braiding phase.

Figure 16: Fundamental polygons
for closed surfaces.

sphere

Σ2
0 ≃ S2

torus
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bΣ2
1 ≃ T2
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b1

a2

b2

Σ2
2

Question: Is there classifying space A for this effective CS field?

Answer: Yes! The 2-sphere S2 ≃ CP 1 ↪→ CP∞ ≃ BU(1)
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Theorem [62][86]: The cofiber presentation of the surface

S1
∨

g(S
1
a ∨ S1

b ) Σ2
g S2

∏
i[ai,bi]

induces short exact sequence exhibiting the Heisenberg extension:

1 π1Maps
(
S2, S2

)︸ ︷︷ ︸
Z

π1Maps
(
Σ2

g, S
2
)︸ ︷︷ ︸

Ẑ2g

π1Maps∗
(∨

2gS
1, S2

)︸ ︷︷ ︸
Z2g

1 .

Question: Can we identify the center Z as arising from braiding?
Answer: Yes!

Theorem [134]: Maps∗(S2, S2) is configurations of charged strings such that ΩMaps∗(S2, S2) is framed links
subject to cobordism, π1Maps∗(S2, S2) generated from framed unknot with 1 braiding

ΩMaps∗
(
S2, S2

)
π3(S

2) ≃ Z
L #L

framed link
linking + framing

number

[−]

is CS observable (“Wilson loop”).

#

( )
= +1 , #

( )
= −1 ,

Ergo: Remarkably, topological quantum observables of effective flux in quantum Hall systems is algebro-topologically
described by replacing the classifying space BU(1) ≃ CP∞ with its 2-skeleton S2 ≃ CP 1.

Question 1: Is there a deeper rationale for such replacement?
Answer: Yes [132][137]: Hypothesis H.

Question 2: Does this new model make novel predictions?
Answer: Yes – defect anyons in FQH-systems:

With the classifying space identified for known situations,
we find its implications for previously inaccessible cases:

Namely generalize now to n-punctured surfaces Σ2
g,n ,

reflecting n defect points in the semiconductor
where the magnetic field is expelled
(type-I superconducting spots).

field solitons:
Pontrjagin submanifolds

flux-expelling defects:
punctures

Proposition. The observables are, in this generality:

Obs0 ≃ C
[
π1Maps∗(

(
Σ2

g,b,n

)
∪{∞}, S

2)
]

≃ C
[
π1Maps∗(Σ2

g,b ∨
∨
n−1
S1, S2)

]
≃ C

[
π1Maps∗

(
Σ2

g,b, S
2
)
× Zn−1

]
≃
g=0
b=1

C
[
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subject to the diffeomorphism action by:

1 Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) 1 .

surface braid group
mapping class group
of punctured surface

mapping class group
of plain surface
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Therefore the equivariant quantum states (jargon: “generally covariant”) on Σ2
0,n

are representations of the wreath product of solitonic and defect phases:

Z ≀ Brn(Σ2
0) =

solit
onic

anyo
ns

Zn−1 ⋊
defe

ct anyo
ns

Brn(Σ
2
0) ↠ Zn−1 ⋊ Symn

Such braid representations for defects have not previously been derived for FQH systems – but are just what is
needed for the grand goal of topological quantum gates: programmable unitary transformations of quantum systems,
insensitive to continuous deformations (hence to noise!)

anyonic
defect

parameter
braiding

k
I

k
I

some quantum state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉
∣∣ψ(t2)〉

another quantum state for
fixed defect positions
k1, k2, · · · at time t2

unitar
y adiab

atic transp
ort

Concretely, the action on Z−1 ⊂ Cn−1 is that of the standard representation, the complement of the trivial 1d rep
inside the defining permutation representation of Symn. This yields what are known as controlled qdit-rotation gates ,
the workhorse of quantum algorithms & the bottleneck for noise-protection, here topologically protected as cylic
defect braidings:

e.g.: ≃

{
(213) 7→

Z︷ ︸︸ ︷[
1 0
0 −1

]
, (231) 7→

Ry(2α)︷ ︸︸ ︷[
cos(α) −sin(α)
sin(α) cos(α)

]
where
α = 4π/3

}
. . .

Conclusion & Outlook. With non-linear flux-quantization laws taken into account in physics, substantial al-
gebraic topology reveals previously unrecognized phenomena potentially visible in experiment and relevant for
quantum technology (potentially a more fruitful commercial AlgTop-application than topological data analysis).
This opens the opportunity to make AlgTop research inform quantum technology.

Symmetry-protection and Equivariant homotopy theory. A noteworthy class of open problems in this
regard is the generalization of all of the phenomena discussed here from spaces to G-spaces equipped with continuous
actions of a finite group, with G-equivariant maps between them.

• On the physics side this corresponds to the generic situation of G-symmetry protected topological materials (see
pointers in [131, §2.3]) particularly important for crystalline symmetry in “anomalous” quantum Hall systems
[139].

• On the math side this corresponds to enhancing the flux quantization laws to exotic equivariant cohomology,
specifically to equivariant Cohomotopy (cf. [127, §4.5][124, §6]).
Concretely for G ↷Σ2

g,n a surface equipped with (crystalline) G-symmetry action for G ⊂ Pin(2) a finite sub-
group, and understanding the canonical Pin(2) ↪→ Spin(3)↠ SO(3)-action on S2 ≃ S(R3), the G-symmetry pro-
tected enhancement of the above algebra of quantum observables will be formed with the subspace Map(−,−)G ⊂
Map(−,−) of G-equivariant maps

topological quantum observables
in G-symmetry protected material

GObs0 := C
[
π1 Map

(
Σ2

g,n, S
2
)G] fundamental group algebra of

G-equivariant mapping space

While the analog of the above theorem for non-trivial such G actions remains open, this formula reduces a great
deal of subtle physics of topologically ordered quantum materials to a precise question in pure algebraic topology.
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Vista: Homotopy Quantum Logic. Let us shift gears. We have seen that:

Topological quantum states HΣ

of solitonic field fluxes
with classifying space A
on spacetime domain R1,1 × Σ

form representations of π1
of the soliton moduli space

FieldsΣ := Maps∗
(
Σ, A

)
�Aut∗(Σ)

This is remarkable because such representations are equivalent to vector bundles
HΣ on FieldsΣ with flat connections ∇, that is local systems on moduli with the
homotopy type of FieldsΣ understood as an ∞-groupoid, (physics newspeak:
generalized symmetry) flat vector bundles are equivalently functors ⊢ HΣ to
the groupoid ModC:

( qua
ntu

m sta
tes

HΣ,
& obs

erv
abl

es

∇
)

Mod
C/
C

FieldsΣ ModC

(pb)

⊢HΣ

This is the special case of ∞-local systems [130]: chain complex-bundles
with flat ∞-connection. These are equivalently FieldsΣ- parameterized

module spectra for the E∞-ring HC hence HC[ΩFieldsΣ]-modules de-

tecting higher structure in the moduli space:

Higher quantum states
& higher observables

Mod
HC/
HC

FieldsΣ ModHC

(pb)

⊢H∞
Σ

Here

• HC denotes the homotopy complex numbers: the EM-ring spectrum of C;
• HC[ΩFieldsΣ] is the homotopy Pontrjagin algebra whose π• is Obs•.

These objects form the tangent ∞-topos TGrpd∞ (over HC), which is [129][130]:
(i) the arena of parameterized stable homotopy theory,
(ii) categorial semantics of a novel quantum programming language.

Remarkably, this provides an AlgTop angle on an ill-understood but central physics aspect:

What exactly is quantum measurement of anyonic topological order?

Fact. [129] Given quantum states H ∈ ModFieldsC ,

• a quantum measurement basis is

– a choice of space W (of “possible worlds”),

– a map W
i−→ Fields whose base change is ambidextrous: ModWC ModFieldsC ,

i!≃ i∗

⊥ ⊤
i∗

– a V ∈ ModWC which (co)induces H ≃ i∗V ;

• the measurement & collapse operation is is the counit i∗H ≃ i∗i∗V V .
retiV

Example. Focusing on Fields := ∗�π0Homeo(Σ2
g,n,b), such measurement bases are given by finite index subgroups

of π0Homeo(Σ2
g,n,b). There is a rich theory of these, potentially of direct relevance for realizing topological quantum

computing...

More on these quantum-information theoretic aspects can be found in [142][138].
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A Background on Homotopy Theory

We collect some notions used in the main text to establish notation and give basic pointers to the literature.

Homotopy theory (cf. [145]). For f0, f1 : X −→ Y a pair of continuous maps between (topological) spaces a
homotopy η : f0 ⇒ f1 is a continuous deformation between them: a continuous map η : [0, 1]×X −→ Y such that

η(0, x) = f0(x),

η(1, x) = f1(x),
denoted X Y .

f0

f1

η

For example, a square “homotopy- commutative diagram”

Σ A

X B

ϕ

b

pη

c

means that

η : [0, 1]× Σ −→ B
η(0, s) = p

(
b(s)

)
,

η(1, s) = c
(
ϕ(s)

)
.

If one declares – and we do – to work in a “convenient” full sub-category of all topological spaces (such as that
of compactly generated or of Delta-generated topological spaces, cf. [127, p 21, 131]) then the topological space
Maps(X,Y ) of all continuous maps X −→ Y satisfies the adjointness relation{

P −→ Maps(X,Y )
}

≃
{
P ×X −→ Y

}
.

For P ≡ [0, 1], this says that homotopies are equivalently paths in mapping spaces, and that homotopy-classes of
maps are the mapping spaces’ path-connected components:

π0 Maps(X,Y ) ≃ Maps(X,Y )/hmtp .

Since homotopies are maps themselves, there are homotopies-between-homotopies and ever higher-homotopies.

Thereby, topological spaces constitute a model for higher categorical symmetry namely for higher groupoids.
As such, they represent both cohomology as well as higher gauge fields in the topological sector. 8

Cohomology cocycle coboundary higher coboundary ...

homotopy X Bf
X B

f

f ′

η X B

f

f ′

η′η ...

Physics field gauge transf. higher gauge transf. ...

In this vein, spaces are homotopy-equivalent B ≃ B′ if they are gauge equivalent namely if we have maps

B B′
f

g
with

g ◦ f ⇒ idB
f ◦ g ⇒ idB′

For example Rn ≃ ∗ in homotopy theory, reflecting the fact that there is no non-trivial topological sector for
fields on Rn.

For actually computing homotopy classes of maps — hence cohomology, hence gauge-equivalence classes of fields
in the topological sector — tools from model category theory are indispensable, which largely say how to “absorb
homotopies into spaces” (cf. [42, §1]).
For example, if p : A −→ B is a Serre fibration, such as a fiber bundle, and Σ is a cell complex, such as a manifold,
then sections-up-to-homotopy of p pulled back to Σ are homotopy equivalent to plain sections:

Σ A

X B

ϕ

b

pη

c

/
hmtp

Σ ∈ Cof
p ∈ Fib
≃


Σ A

X B

ϕ

b

p

c

/
hmtp

Pointed homotopy theory (cf. [73, §3]). To reflect the condition that solitonic fields are localized in that they
vanish at infinity we

– equip domain spaces X with a point at infinity, ∞X ∈ X,
– equip classifying spaces B with a point representing zero, 0B ∈ B,

8Beyond the topological sector, full higher gauge fields are still represented by maps X −→ B etc., only that now B is no longer just
a topological space but a “smooth ∞-stack”, cf. [35][42, pp 41].
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– require maps f : (X,∞X) −→ (B, 0B) to respect these base points
so that maps literally vanish at infinity

X B

{∞X} . {0B} .

c

For instance, to make fields on Rn vanish at infinity, we adjoin its would-be “point at infinity” to it (jargon:
“one-point compactification”) to obtain Rn

∪{∞} ≃ Sn. On the other hand, if we want fields on some X without
a vanishing condition, we may adjoin a disjoint point-at-infinity, then pointed maps X⊔{∞} −→ B are ordinary
X −→ B. For example,

based loop space free loop space maps out of contractible

Maps∗(R1
∪{∞}, B) = ΩB , Maps∗(S1

⊔{∞}, X) =: LB , Maps∗(R1
⊔{∞}, B) = B .

Given a pair of pointed spaces (X,∞X), (Y,∞Y ), in their product space X × Y any point should be regarded as
being at infinity which is so with respect to either factor space; this yields the smash product:

X ∧ Y :=
X × Y

{∞X}×Y ∪ X×{∞Y }
to which the sub-space Maps∗(−,−) of pointed maps is again adjoint:{

P
pntd−−−→ Maps∗/(X,Y )

}
≃

{
P ∧X pntd−−−→ Y

}
.

For example,
Sn ∧ Sm ≃ Rn

∪{∞} ∧ Rm
∪{∞} ≃ (Rn × Rm)∪{∞} ≃ Sn+m ,

so that, for instance:

Maps∗
(
X ∧ S1, B

)
≃ Maps∗

(
S1, Maps∗/

(
X, B

))
=: ΩMaps∗

(
X, B

)
.

The differential character map chA, at the heart of flux-quantization in the generality of flux densities with
non-linear Bianchi identities:

– takes maps into a classifying space A (classifying charges),

– to maps into the moduli ∞-stack of closed lA-valued differential forms (classifying corresponding flux densi-
ties),

– thereby allowing gauge potentials to relate local flux densities to global charges.

X

A Ω1
dR

(
−; lA

)
clsd

SΩ1
dR

(
−; lA

)
clsd

cha
rge

s fluxes

chA

character

gauge potentials

η
S

At a high level, this chA is readily described: It is the smooth differential-form model for the R-rationalization
of A, followed by derived extension of scalars Q → R — as indicated in the following paragraphs.

However, under the hood, this construction makes use of a fair bit of model category-theoretic rational-homotopy
theory which we do not have space nor inclination to review here (all details in [42]), whence the following should
be ignored by readers without serious background in (rational) homotopy theory — or else taken as motivation to
learn it! (Start at [42, §1].) Here is how it goes:

Fundamental theorem of homotopy theory. Regarding (classifying) spaces up to (weak) homotopy equivalence
means equivalently to regard them as their ∞-groupoids (Kan simplicial sets) Sing(−) of points, paths, 2-paths,
etc., in that there is a Quillen equivalence [42, Ex. 1.13]

TopSpQu ∆SetQu≃
Qu

Sing
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Fundamental theorem of dg-algebraic rational homotopy theory. Sending simplicial sets to their dgc-
algebras of simplex-wise Q-polynomial differential forms (“piecewise linear”, PL) is the left adjoint in a Quillen
adjunction [42, Prop. 5.5]

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PQLdR

⊥Qu

Hom
(
(−),ΩPQLdR(∆•)

)
whose derived adjunction-unit models rationalization of (connected, nilpotent, Q-finite) homotopy types A [42,
Prop. 5.6].

A LQA
ηQ
A

For R-rational homotopy. The analogous Quillen adjunction with R-polynomial forms

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PRL

⊥
Qu

Hom
(
(−),ΩPRLdR(∆•)

)
models rationalization followed by derived extension of scalars from Q to R (no longer a localization but still
denoted like one) [42, Prop. 5.8].

A LQA LRA
ηQ
A

Now with R-coefficients, we may equivalently use simplex-wise smooth differential forms (piecewise smooth, PS)

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PSdR

⊥Qu

Hom
(
(−),ΩPSdR(∆•)

)
In fact, we may equivalently use smooth differential forms on simplices times any Rn [42, Prop. 5.10].

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PSdR

⊥
Qu

Hom
(
(−),ΩPSdR(Rn×∆•)

)
Taking values in deformations of flux densities. Via the minimal Sullivan model CE(lA) of A, this derived
adjunction takes values in closed smooth lA-valued differential forms [42, (9.9)]

Ω1
dR

(
Rn ×∆•, lA

)
clsd

:= Hom
(
CE(lA), ΩdR(Rn ×∆•)

)
which is the value on Rn of the homotopy-constant ∞-stack that is the shape S(−) of the sheaf of closed forms [127,
Prop. 3.3.48]

S Ω1
dR

(
−; lA

)
clsd

∈ Sh∞
(
CartSp

)
.

In total, regarding also A ∈ Sh∞(∗) Disc−−−→ Sh∞(CartSp), this establishes the differential character map as promised
[42, Def. 9.2]

A SΩ1
dR

(
−; lA

)
clsd

chA

B Background on TED Cohomotopy

Gauge potentials in twistorial Cohomotopy — and the Green-Schwarz mechanism. Consider the

Whitehead L∞-algebra of the twistor fibration CP 3 tH−→ HP 1 ≃ S4 ,

CE
(
l
S4CP 3

)
= Rd


f2
h3
g4
g7

/


d f2 = 0
dh3 = g4 + f2 f2
d g4 = 0
d g7 = 1

2g4 g4

,
and bigons parameterized like this: s

0

1

t

0 1
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Theorem ([53, p 23][54, §4.1]). Given a manifold Ui (generically: a coordinate chart):

(i) Closed l
S4CP 3-valued differential forms are in natural bijection with flux densities of this form:

Ui

Ω1
dR

(
−; l

S4CP 3
)
clsd

(F2,H3,G4,G7)


p0

i0

p0 ◦ i0 = id

i0 ◦ p0 = id



F2 ∈ Ω2
dR(Ui)

H3 ∈ Ω3
dR(Ui)

G4 ∈ Ω4
dR(Ui)

G7 ∈ Ω7
dR(Ui)

∣∣∣∣∣∣∣∣∣∣∣∣

dF2 = 0

dH3 = G4 + F2 F2

dG4 = 0

dG7 = 1
2 G4G4


(ii) Given one of these, its set of coboundaries (null-concordances) naturally retracts onto the set of gauge po-
tentials of this form:

Ui ∗

Ω1
dR

(
−; l

S4CP 3
)
clsd

SΩ1
dR

(
−; l

S4CP 3
)
clsd

(F2,H3,G4,G7)
(F̂2,Ĥ3,Ĝ4,Ĝ7)

0

η
S


p1

i1

p1 ◦ i1 = id


A1 ∈ Ω1

dR

(
Ui

)
B2 ∈ Ω2

dR

(
Ui

)
C3 ∈ Ω3

dR

(
Ui

)
C6 ∈ Ω6

dR

(
Ui

)

∣∣∣∣∣∣∣∣∣∣∣

dA1 = F2

dB2 = H3 − C3 −A1 F2

dC3 = G4

dG6 = G7 − 1
2C3G4




F̂2 := t F2 + dt A1

Ĥ3 := tH3 + dtB2 + (t2 − t)A1F2

Ĝ4 := tG4 + dt C3

Ĝ7 := t2G7 + 2tdt C6




A1 :=

∫
[0,1]

F̂2

B2 :=
∫
[0,1]

(
Ĥ3 −

( ∫
[0,−] F̂2

)
F̂2

)
C3 :=

∫
[0,1]

Ĝ4

C6 :=
∫
[0,1]

(
Ĝ7 − 1

2

( ∫
[0,−] Ĝ4

)
Ĝ4

)


(iii) Given a pair of these, the set of higher coboundaries (2nd-order concordances) between them naturally retracts
onto the set of gauge transformations of this form:

0 (F2, H3, G4, G7)

(F̂2, Ĥ3, Ĝ4, Ĝ7)

(F̂ ′2, Ĥ
′
3, Ĝ

′
4, Ĝ

′
7)

(̂̂F 2,
̂̂H3̂̂G4,
̂̂G7

)


p2

i2

p2 ◦ i2 = id


α0 ∈ Ω0

dR(Ui)

β1 ∈ Ω1
dR(Ui)

γ2 ∈ Ω2
dR(Ui)

γ5 ∈ Ω5
dR(Ui)

∣∣∣∣∣∣∣∣∣∣∣

dα0 = A′1 −A1

dβ1 = B′2 −B2 + γ2 + α0 F2

d γ2 = C ′3 − C3

d γ5 = C ′6 − C6 − 1
2C
′
3 C3




̂̂F 2 := t F2 + dt A1 + sdt
(
A′1 −A1

)
− dsdt α0̂̂H3 := tH3 + dtB2 + sdt (B′2 −B2) − dsdt β1

+(t2 − t)A1F2 + (t2 − t)s(A′1 −A1)F2

+(t2 − t)ds α0F2̂̂G4 := tG4 + dt C3 + sdt
(
C ′3 − C3

)
− dsdt γ2̂̂G7 := t2G7 + 2tdt C6 + 2stdt(C ′6 − C6)

− 2ds tdt
(
γ5 + 1

2γ2 C3

)





α0 :=
∫
s∈[0,1]

∫
t∈[0,1]

̂̂F 2

β1 :=
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
( ∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
γ2 :=

∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4

γ5 :=
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

( ∫
t′∈[0,−]

̂̂G4

) ̂̂G4

)
− 1

2γ2 C3


Notice the expression for flux density subject to an (abelian) Green-Schwarz mechanism:

H3 = dB2 + A1F2 + C3 .

Proof. With the blue terms discarded, this is the statement of [53, p 23][54, §4.1]. We compile the full argument.

To see that p1 is well-defined:

– for C3, C6 this is [53, (70)],
– for A1 it works just as for C3,
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– for B2 we compute, in generalization of [54, below (138)], like this:

dB2 ≡ d
∫
[0,1]

(
Ĥ3 −

( ∫
[0,−] F̂2

)
F̂2

)
= ι∗1

(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

H3−A1 F2

− ι∗0

(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

=0

−
∫
[0,1]

d
(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

Ĝ4

= H3 − A1 F2 − C3 .

To see that i1 is well-defined:

– for Ĝ4, Ĝ7 this is [53, (72)],

– for F̂2 it works just as for Ĝ4,

– for Ĥ3 we compute, in generalization of [54, further below (138)], as follows:

d
(
tH3 + dtB2 + (t2 − t)A1F2

)
= dtH3 + tG4 + tF2F2

− dtH3 + dt C3 + dt A1F2

+ d
(
(t2 − t)A1F2

)


hence indeed: d Ĥ3 = tG4 + dt C3︸ ︷︷ ︸

Ĝ4

+

=d(t2A1F2)︷ ︸︸ ︷
(tF2 + dt A1)︸ ︷︷ ︸

F̂2

(tF2 + dt A1)︸ ︷︷ ︸
F̂2

Moreover, it is immediate from inspection that ι∗1Ĥ3 = H3 and ι∗0Ĥ3 = 0.

To see that p1 ◦ i1 = id:

– for C3, C6 this is [53, below (72)],

– for A1 this works just as for C3,

– for B2 we immediately compute:∫
[0,1]

(
Ĥ3 −

(∫
[0,−]F̂2

)
F2

)
=

∫
[0,1]

dtB2︸ ︷︷ ︸
B2

−
∫
[0,1]

tA1 dt A1︸ ︷︷ ︸
=0

= B2 .

To see that p2 is well-defined:

– for ̂̂G4,
̂̂G7 this is [53, (74-5)],

– for ̂̂F 2 this works just as for ̂̂F 2,

– for ̂̂H3 we compute, in generalization of [54, below (140)], as follows:

dβ1 ≡ d
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
( ∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
= ι∗s=1

∫
t∈[0,1]

( ̂̂H3 − · · ·
)
− ι∗s=0

∫
t∈[0,1]

( ̂̂H3 − · · ·
)
−
∫
s∈[0,1] d

∫
t∈[0,1]

( ̂̂H3 − · · ·
)

=
∫
t∈[0,1] ι

∗
s=1

( ̂̂H3 − · · ·
)
−
∫
t∈[0,1] ι

∗
s=0

( ̂̂H3 − · · ·
)
−

∫
s∈[0,1] ι

∗
t=1

( ̂̂H3 − · · ·
)
+
∫
s∈[0,1]

∫
t∈[0,1] d

( ̂̂H3 − · · ·
)

=
∫
t∈[0,1]

(
Ĥ ′3 − · · ·

)
−
∫
t∈[0,1]

(
Ĥ3 − · · ·

)
+

( ∫
s∈[0,1]

∫
t∈[0,1]

̂̂F 2

)
F2 +

∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4

= B′2 −B2 + α0 F2 + γ2 .

To see that i2 is well-defined:

– for γ2, γ5 this is [53, (76)],

– for α0 this works just as for γ2,
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– for β1 we compute as follows:

d (tH3 + dtB2 + sdt (B′2 −B2) − dsdt β1) =

̂̂G4︷ ︸︸ ︷
tG4 + dt C3 + sdt(C ′3 − C3) − dsdt γ2

+ t F2F2 + dt A1 F2 + sdt(A′1 −A1)F2 − dsdt α0 F2

d

 (t2 − t)A1 F2 + (t2 − t)s(A′1 −A1)F2

+(t2 − t) ds α0 F2

 =

̂̂F 2
̂̂F 2︷ ︸︸ ︷

t2 F2 F2 + 2tdt A1F2 + 2tdt s(A′1 −A1) + 2tdtds α0 F2

− t F2 F2 − dt A1 F2 − dt s(A′1 −A1)F2 − dtds α0 F2

d ̂̂H3 = ̂̂G4 + ̂̂F 2
̂̂F 2 .

Moreover, it is immediate from inspection that ι∗s=0
̂̂H3 = Ĥ3 , ι∗s=1

̂̂H3 = Ĥ ′3 and ι∗t=0 = 0, ι∗t=1 = H3.

To see that p2 ◦ i2 = id, we directly compute,
first ∫

s∈[0,1]
∫
t∈[0,1]

̂̂G4 =
∫
s∈[0,1]

∫
t∈[0,1](−dsdt γ2) = γ2∫

s∈[0,1]
∫
t∈[0,1]

̂̂F 2 =
∫
s∈[0,1]

∫
t∈[0,1](−dsdt α0) = α0

then∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

(∫
t′∈[0,t]

̂̂G4

) ̂̂G4

)
− 1

2 γ2 C3

=
∫
s∈[0,1]

∫
t∈[0,1]

̂̂G7 − 1
2

∫
s∈[0,1]

∫
t∈[0,1]

(
t C3 + st(C ′3 − C2) + tds γ2

)(
tG4 + dt C3 + sdt(C ′3 − C3)− dsdt γ2

)
− 1

2 γ2 C3

=
(
γ5 + 1

2γ2C3

)
− 1

2C3γ2 − 1
4 (C

′
3 − C3)γ2 +

1
2 γ2 C3 +

1
4 γ2 (C

′
3 − C3)︸ ︷︷ ︸

0

− 1
2 γ2 C3

= γ5

and analogously∫
s∈[0,1]

∫
t∈[0,1]

( ∫
t′∈[0,−]

̂̂F 2

) ̂̂F 2

=
∫
s∈[0,1]

∫
t∈[0,1]

(
tA1 + st(A′1 −A1) + tds α0

)(
t F2 + dt A1 + sdt(A′1 −A1) − dsdt α0

)
= 1

2A1α0 +
1
4 (A

′
1 −A1)α0 − 1

2α0A1 − 1
4α0(A

′
1 −A1)

= 0

so that also ∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
(∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
=

∫
s∈[0,1]

∫
t∈[0,1](−dsdt β1) = β1 .

Cocycles in differential 2-Cohomotopy and the abelian Chern-Simons invariant on the 3-Sphere.
Notice that the Bianchi identities encoded by 2-Cohomotopy are the characteristic property of the abelian Chern-
Simons term:

CE
(
lS2

)
≃ Rd

[
f2
h3

]/(
d f2 = 0

dh3 = f2f2

)
⇒ Ω1

dR

(
X; lS2

)
clsd

≃

{
F2 ∈ Ω2

dR(X)

H3 ∈ Ω3
dR(X)

∣∣∣∣∣ dF2 = 0

dH3 = F2 F2

}
.

We may bring this out more concretely:

Gauge-field configurations on R3 flux-quantized in 2-Cohomotopy and vanishing in a neighborhood of
infinity are cocycles in differential 2-Cohomotopy on R3

∪{∞}, hence dashed homotopies as shown on the right [132,

§3.3].
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R3
∪{∞}

Ω1
dR

(
−; lS2

)
clsd

SS2

SΩ1
dR

(
−; lS2

)
clsd

charge in2-Cohomotopy
n

flux
dens

ity

valu
ed in lS

2

(F2,H3)
(A1,B2)

gauge potentials
in diff. 2-Cohomotopy

η
S ch

Theorem. For each [n] ∈ π2
(
R3

∪{∞}
)
≃ Z this exists with H3 = 0 and [n] =

∫
R3 A1 F2 the Chern-Simons invariant.

To see this, first consider:
Lemma. On a smooth manifold Σ, every cocycle α in rational 3-Cohomotopy is represented by a globally defined
differential form H3,

X SΩ1
dR

(
−; lS3

)
clsd

Ω1
dR

(
−; lS3

)
clsd

H3
η

S

Proof of the Lemma. Since lS3 ≃ lB3Q this is just the degree=3 case of the statement that cocycles in de Rham
hyper-cohomology have global representatives on smooth manifolds (using partitions of unity).

Proof of the Theorem. Stereographic projection provides a homeomorphism R3
∪{∞}

∼−→ S3 which is smooth away
from the point at infinity, which we may slightly deform to a smooth degree=1 map that is constant on a neigh-
borhood of infinity. Since π2(S3) ≃ π2(S

3) ≃ Z we may find a smooth map n : S3 −→ S2, with compact support

away from the base point, so that R3
∪{∞} → S3 n−→ S2 represents the charge [n].

Now the 2-cohomotopical character map for charges on S3, shown in black, factors as shown in blue (by
naturality of rationalization), which furthermore factors as shown in orange (by the above Lemma).

R3
∪{∞} S3 SS3 SS2

Ω1
dR(−; lS3)clsd SΩ1

dR(−; lS3)clsd SΩ1
dR(−; lS2)clsd

η
S

n·dvolS3

n

chS3 chS2

η
S (ln)∗

(17)

Hence, to get a differential cocycle as desired, it is sufficient to exhibit gauge potentials (A1, B2) encoding a
concordance filling the diagram on the right

R3
∪{∞} S3 S2 SS2

Ω1
dR(−; lS3)clsd

Ω1
dR(−; lS2)clsd SΩ1

dR(−; lS2)clsd

n

n·dvolS3

(F2,H3=0)
(A1,B2)

η
S

ch2

(17)

(ln)∗◦ ηS

η
S

However, since H2
dR(S

3) = 0, and by the Whitehead integral formula (cf. [57, p 134][12, p 228][38, p 19]) there
exists: A1 ∈ Ω1

dR(S
3)

B2 ∈ Ω2
dR(S

3)
s.t.

dA1 = F2 := n∗dvolS2

dB2 = n · dvolS3 −A1F2

(18)

From this we get the the desired concordance:

(0, n · dvolS3) ⇒ (F2, 0) :

 F̂2 := t F2 + dt A1 ,

Ĥ3 := (t− 1)ndvolS3 + dtB2 + (t2 − t)A1F2 ,

(
F̂2, Ĥ3

)
|t=0 = (0, n · dvolS3)(

F̂2, Ĥ3

)
|t=1 = (F2, 0)

d F̂2 = 0 , d Ĥ3 = F̂2 F̂2 .

Cartesian M5-Probes charged in Cohomotopy. The equations of motion for a(n orbifolded) cartesian M5-
probe demand that the flux H3 = const [54, Ex. 3.14], and thus its solitonic vanishing-at-infinity implies H3 = 0.
The above theorem says that such solutions still support non-vanishing cohomotopical charge, in fact that the
vanishing of H3 forces the charge to be carried by the Chern-Simons invariant of the auxiliary gauge field A1 that
is brought in by the cohomotopical flux quantization.
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[111] Papić, Z., Balram, A. C., Fractional quantum Hall effect in semiconductor systems, Encyclopedia of Con-
densed Matter Physics 2nd ed. 1 (2024), 285-307, [doi:10.1016/B978-0-323-90800-9.00007-X],
[arXiv:2205.03421].

[112] Polchinski, J., Dualities of Fields and Strings, Studies in History and Philosophy of Modern Physics 59 (C)
(2017), 6-20, [arXiv:1412.5704].

[113] Polychronakos, A. P., Path Integrals and Parastatistics, Nucl. Phys. B 474 (1996) 529-539
[arXiv:hep-th/9603179], [doi:10.1016/0550-3213(96)00277-5].

[114] Pontrjagin, L., Classification of continuous maps of a complex into a sphere, Communication I, Doklady
Akademii Nauk SSSR 19 3 (1938), 147-149.

[115] Prange, R. E., Girvin, S. M. (eds.), The Quantum Hall Effect, Graduate Texts in Contemporary Physics,
Springer (1986, 1990), [doi:10.1007/978-1-4612-3350-3].

[116] Preskill, J., Quantum Computing in the NISQ era and beyond, Quantum 2 79 (2018), [arXiv:1801.00862],
[doi:10.22331/q-2018-08-06-79].

[117] Preskill, J., Crossing the Quantum Chasm: From NISQ to Fault Tolerance, talk at Q2B 2023, Silicon Valley
(2023), [ncatlab.org/nlab/files/Preskill-Crossing.pdf].

[118] Preskill, J., Beyond NISQ: The Megaquop Machine, talk at Q2B 2024 Silicon Valley (Dec. 2024),
[www.preskill.caltech.edu/talks/Preskill-Q2B-2024.pdf].

[119] Pu, S., Balram, A. C., Fremling, M., Gromov, A., Papić, Z., Signatures of Supersymmetry in the ν = 5/2 Frac-
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