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Abstract

These extended lecture notes survey a novel derivation of anyonic topological order (as seen in fractional
quantum Hall systems) on single magnetized M5-branes probing Seifert orbi-singularities (“geometric engineer-
ing” of anyons), which we motivate from fundamental open problems in the field of quantum computing.

The rigorous construction is non-Lagrangian and non-perturbative, based on previously neglected global
completion of the M5-brane’s tensor field by flux-quantization consistent with its non-linear self-duality and
its twisting by the bulk C-field: This exists only in little-studied non-abelian generalized cohomology theories,
notably in a twisted equivariant (and “twistorial”) form of unstable Cohomotopy (“Hypothesis H”).

As a result, topological quantum observables form Pontrjagin homology algebras of mapping spaces from the
orbi-fixed worldvolume into a classifying 2-sphere. Remarkably, theorems of algebraic topology imply from this
the quantum observables and modular functor of abelian Chern-Simons theory, as well as braid group actions
on defect anyons of the kind envisioned as hardware for topologically protected quantum gates.
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1 Motivation: Better Anyon Theory

While the hopes associated with the idea of quantum computing [92][55] are hard to over-state [48][9][105], there are
good arguments that commercial-value quantum computing will ultimately require quantum hardware exhibiting
anyonic topological order [144][116]. But microscopic theoretical derivations, from first principles, of such anyonic
quantum states in strongly-coupled quantum systems had remained sketchy, which may explain the dearth of
experimental realizations to date.

What we review here (based on [119][122][50]) is a rigorous theoretical account via “geometric engineering on
M-branes” subject to a previously neglected step of “flux-quantization” (the latter surveyed in [117]).

First, we expand on the motivation a little further:

Ultimate need for Topological Quantum Protection. Despite the fascinating reality of presently available
Noisy Intermediate-Scale Quantum computers (NISQ [103]) and despite the mid-term prospect of their stabiliza-
tion at the software-level via Quantum Error Correction (QEC [79][104], at heavy cost of available system scale),
serious arguments [68][28][77][29][30][63][47][132] and experience [20] suggest that large-scale quantum computa-
tion is hardly attainable by incremental optimization of NISQ architectures, but [21] 1 that more fundamental
quantum principles will need to be exploited – notably topological error protection already at the hardware-level
[73][43][124][123] in order to suppress quantum errors occurring in the first place.

While topological quantum protection is thus pos-
sibly indispensable for achieving commercial-value
quantum computing, its ambitious development, in
theory and practice, is in fact far from mature, is
in need of new ideas and of further analysis, and
leaves much room for development.

Since this is not always made clear, to amplify this
point:

Quantum⇒

computational
advantage

Topology⇒

hardware-level
error-protection

Topological Quantum⇒

robust large-scale
commercial-value

quantum computing

(i) Theoretical challenges: While quantum theorists now routinely deal with the algebraic structure (namely:
braided fusion categories) commonly expected [74] to describe interaction of anyon species in toto, the mi-
croscopic first-principles understanding of the formation of anyonic topological order as solitonic states in the
many-body (electron) dynamics of quantummaterials has remained at most sketchy, even in the best-understood
case of the fractional quantum Hall effect [126], cf. [65]. 2

In fact, this is an instance of the general open problem of analytically establishing gapped bound states in
any strongly coupled/correlated quantum system: The problem of formulating non-perturbative quantum field
theory [6][32]. The analogous issue in particle physics (there called the Yang-Mills mass gap problem [93]) has
been recognized as being profound enough to be declared one of seven “Millennium Problems” [18].

(ii) Practical challenges: But without a robust theoretical prediction of anyonic solitons in actual quantum
materials, it remains unclear where and how to look for them. As an unfortunate result, experimentalists
have turned attention to mere stand-ins, such as “Majorana zero modes” at the ends of super/semi-conducting
nonowires ([72][84] which, even if the doubts about their detection were to be removed [22], are by construction
immobile and hence do not serve as hardware-protected quantum braid gates) and quantum-simulation of
anyons on NISQ architectures ([64][41, Fig. 5], which might serve as software-level QEC but again offers no
hardware-level protection.

In short: Foundation and implementation of topological quantum computing as a plausible long-term pathway
to actual quantum value deserves and admits thorough re-investigation.

1[21]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum
computer that can solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error
correction by using far-more-stable qubits, in an approach called topological quantum computing.”

2[65, p. 3]: “Though the Laughlin function very well approximates the true ground state at ν = 1/q, the physical mechanism of
related correlations and of the whole hierarchy of the FQHE remained, however, still obscure. [...] The so-called HH (Halperin–Haldane)
model of consecutive generations of Laughlin states of anyonic quasiparticle excitations from the preceding Laughlin state has been
abandoned early because of the rapid growth of the daughter quasiparticle size, which quickly exceeded the sample size. [...] the Halperin
multicomponent theory and of the CF model advanced the understanding of correlations in FQHE, however, on phenomenological level
only. CFs were assumed to be hypothetical quasi-particles consisting of electrons and flux quanta of an auxiliary fictitious magnetic
field pinned to them. The origin of this field and the manner of attachment of its flux quanta to electrons have been neither explained
nor discussed.”
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Concretely, the intrinsic tension haunt-
ing the traditional quantum computing
paradigm is (cf. [15, p 272][132, p 3]) that:

(i) quantum gates are implemented via interaction of subsystems,

(ii) while quantum coherence requires avoiding all interaction.

The idea of topological protection is to cut this Gordian knot by quantum gates operating without interaction.
The physical principle that allows this to work
[3][4][43, p 6][98, p 50] is the quantum adia-
batic theorem [107]: Gapped quantum systems
frozen at absolute zero in one of several ground
states, but dependent on external parameters,
will defy interaction with noise quanta below
the energy gap and yet have their ground state
transformed by sufficiently gentle tuning of
the parameters: a holonomic quantum gate.
This is topological if it is invariant under lo-
cal deformations of parameter paths, and thus
protected also against classical noise. For an
anyonic braid gate the parameters in question
are the positions of defects in a 2-dimensional
transverse space within a quantum material.

transverse space

anyonic
defect

parameter
braiding

k
I

k
I

some quantum state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉 unitar
y adiab

atic transp
ort

∣∣ψ(t2)〉
another quantum state for

fixed defect positions
k1, k2, · · · at time t2

The remaining problem is to develop a precise mathematical theory describing these anyons.

Improved Anyon Models via Geometric Engineering on M-branes. A remarkable approach to the oth-
erwise elusive microscopic analysis of such strongly-coupled/correlated quantum systems emerges in the guise
of “geometric engineering” [71][12] of quantum fields on “M-branes” probing orbifold singularities, whereby the
given dynamics is (partially) mapped onto the fluctuations of Membranes (whence M-theory [26]), and of higher-
dimensional “M5-branes” [50], propagating in an auxiliary higher-dimensional gravitating spacetime orbifold [111].

Geometric engineering of quantum sys-
tems on M-branes provides tools for
analyzing otherwise elusive strongly cou-
pled/correlated quantum phenomena.

Strongly coupled
quantum material

M-brane fluctuating in
auxiliary gravitational
spacetime orbifold

direct analysis
unfeasible here

analytical tools
exist here

match key

properties

This procedure is most famous in the (unrealistic) limit of large rank and hence of large numbers N → ∞ of
coincident such branes, where it extracts quantum correlators and quantum phase transitions entirely from classical
gravitational asymptotics (“holographic duality” [1]). The application to quantum materials [143][59] is now well-
studied, notably in the case of quantum critical superconductors engineered in M-theory [62][45][46][56][24][25][2].

But we have established [50][119][120][122] that after implementing a previously neglected step of “flux quantiza-
tion” [117] on the M5-brane worldvolume, there provably appear general solitonic and specifically anyonic quantum
states already in the more realistic situation of single (N = 1) coincident branes. (Similar results for N = 2 had
previously only been conjectured [16] by appeal to the expected but notoriously undefined effective quantum field
theory on coincident M5-branes.)

Brane diagram for
geometric engineering
of anyons on single M5-
branes wrapping an orbi-
singularity [122]:
It is a subtle mechanism
of flux-quantization [117]
of the self-dual tensor-
field on the M5 [50] that
stabilizes [119] its anyonic
soliton configurations.

M5-brane probe
worldvolume

2-brane worldvolume
hosting anyonic solitons

M-theory
circle

cone
orbifold

Σ1,5 = R1,0 × R2
∪{∞} × S1 × R2 � Z2

∞

anyon

worldline

× ×

Here, we review and explain how this works, for an audience assumed to be familiar with the general mechanism of
flux quantization as surveyed in [117]. First to recall the traditional theory of fractional quantum Hall anyons:
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Quantum Hall effect ([102][13][126][99]). In a very thin and hence effectively 2-dimensional sheet Σ2 of (semi-)conducting
material, carrying magnetic flux density B:

the energy of electron states is quantized by Landau levels i ∈ N as E = ℏωB(i+
1
2 ) ,

where each level comprises of one state per magnetic flux quantum: ndeg = B/Φ0 ;

The Lorentz force on a longitudinal electron current Jx at filling
fraction ν is compensated in equilibrium by an electric Hall field:

Ey = 1
ν Jx .

[131, (4-12)]

Integer quantum Hall effect. Therefore, Fermi theory of idealized free electrons predicts the system to be a
conductor away from the energy gaps between a completely filled and the next empty Landau level,
hence away from the number of electrons being integer multiples of the
number of flux quanta, where longitudinal conductivity should vanish.

nel = νB/Φ0 , ν ∈ N.

This is indeed observed — in fact the vanishing conductivity is observed in sizeable neighbourhoods of the
critical filling fractions (“Hall plateaux”, attributed to subtle disorder effects).

Fractional quantum Hall effect (FQHE). But in reality the electrons are far from free.
While there is little theory for strongly interacting quantum systems, experiment shows
that the Fermi idealization breaks down at low enough temperature, where longitudinal
conductivity decreases also in neighbourhoods of certain fractional filling factors ν.

ν ∈ Q,
prominently for
ν = 1/k , k ∈ 2N+ 1.

The traditional heuristic idea
is that at these filling frac-
tions the interacting electrons
each form a kind of bound
state with k flux quanta,
making “composite bosons”
(cf. [145]) that as such con-
dense to produce an insulat-
ing mass gap, even inside the
Landau level.

un-paired
flux quantum:

quasi-hole

deficit of a
flux-quantum:
quasi-particle

k flux-quanta
bound to 1 electron:
composite boson

(cf. [126, Fig. 16])

Anyonic quasi-particles. This heuristic model suggests that in the Hall plateau neighbourhood around such
filling fraction there are unpaired flux quanta effectively “bound to” 1/kth of a (missing) electron: called “quasi-
particles” (“quasi-holes”). These quasi-particles/holes evidently have fractional charge ±e/k and are expected to
be anyonic with fractional pair exchange phase eiπ/k. This phase has been experimentall observed [91].

Effective abelian Chern-Simons theory.
The traditional proposal for an effective field the-
ory description of k-fractional quantum Hall sys-
tems postulates that the effective field is a 1-
form potential a for the electric current density 2-
form J , itself minimally coupled to the quasi-hole
current j, and with effective dynamics encoded
by the level=k Chern-Simons (CS) Lagrangian
[145][136].

electron current
density 2-form

J =
curre

nt 3-vec
tor

J⃗ ⌟
volum

e form

dvol =: d a effective gauge field

quasi-particle current
density 2-form

j = j⃗ ⌟ dvol

background flux
density 2-form

F = dA external gauge field

effective Lagrangian
density 3-form

L := k 1
2ada︸ ︷︷ ︸
CS(a)

− Ada︸︷︷︸
AJ

+ a j [136, (2.11)]

Its Euler-Lagrange equations of motion at longitudinal electron current and static quasi-particles

δL
δa = 0 ⇔ J = 1

k

(
F − j

) J ≡ J0 dxdy − Jx dtdy

j ≡ j0 dxdy

F ≡ B dx dy − Ey dtdyexpress just
the hallmark
properties of
the FQHE
at ν = 1/k.

⇔


Jx = 1

kEy ⇔ Hall conductivity law at 1/k filling

J0 = 1
k B ⇔ each electron binds to k flux quanta, but

− 1
k j0 1/kth electron missing for each quasi-hole

(!)

Conceptual problems. But this can only be a local description, on a single chart (as is common for Langrangian
field theories): Neither J nor F may admit global coboundaries a and A, respectively. Instead, both must be
subjected to some kind of flux-quantization. For F this must be classical Dirac charge quantization, which however
is incompatible with integrality of J when k ̸= 1 (cf. [139, p. 35][130, p 159]). But without this, the implications
break concerning topological order from abelian CS theory (ground state degeneracy, modular functoriality, ...).

Question: Is there a non-Lagrangian theory for quasi-particles of properly flux-quantized FQH systems? Yes!...
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The main result to be discussed here is that the key features of the anyonic topological order as seen in fractional
quantum Hall systems are consistently, rigorously and naturally reflected by the topological light-cone quantization
of the self-dual tensor field on M5-brane probes of certain orbi-singularities in 11D supergravity — once the subtle
(non-abelian) flux-quantization of this field is properly taken care of, which is the key step that has not previously
received attention.

Further aspects. In fact, fractional quantum Hall systems exhibit further remarkable properties which have not
previously been reflected in their effective (Chern-Simons) descriptions, but which are naturally reflected in the
M5-brane model:

(1.) hidden supersymmetry
(2.) hidden T-duality

We close this introduction by briefly indicating these two phenomena:

N-Electron ground states of quantum Hall systems. While a microscopic derivation of fractional quantum
Hall ground states Ψ remains missing, phenomenologically successful Ansätze exist:3

at odd filling fraction ν = 1/q, q ∈ 2N+ 1,
the Laughlin wavefunction

ΨLa

(
z1, · · · , zN

)
:=

∏
i<j

(
zi − zj

)q
exp

(
− 1

ℓ2B

∑
i

∣∣zi∣∣2 )
at even filling fraction ν = 1/q, q ∈ 2N,

the Read-Moore wavefunction
ΨRM

(
z1, · · · , zN

)
:= Pf

(
1

z•
1−z•

2

)
ΨLa(z

1, · · · zN ) ,

Here the Pfaffian Pf of a skew-symmetric N ×N matrix A is
the Bererzinian integral over anti-commuting variables (θi)Ni=1:

Pf(A) :=
∫ (∏

idθ
i
)

pick coefficient of
top θ-power

exp
(
1
2Aij θ

iθj
)
.

Hidden super-geometry of quantum Hall systems.
This suggests to promote the plane C1 to the super-
space C1|1 with its super-translation group structure

(z, θ) + (z′, θ′) =
(
z + z′ + θθ′, θ + θ′

)
Here the super-Laughlin state ΨsLa

(
(z1, θ1), · · · , (zN , θN )

)
:=

∏
i<j

(
zi − zj − θiθj

)q
exp

(
− 1

ℓ2B

∑
i

∣∣zi∣∣2 )
exhibits the Read-Moore state as
a super-partner to the Laughlin
state (up to normalization) [60][54,
(13)]:

ΨsLa
Laughlin state

fermionic for odd q
ΨLa ΨRM

Moore-Read state
fermionic for even q

super-
Laughlin state

0←[ θlowest component ∫ ∏
i dθ

i

top component

Collective excitations. The Moore-Read state is known to have two density-wave excitations for wave-vectors
k ∈ C:

the magneto-roton state ΨMR,k(z
1, · · · , zN ) :=

∑
i exp

(
− ik∂zi

)
exp

(
− i

2kz
i
)
ΨMR(z

1, · · · , zN )

the neutral fermion state ΨNF,k which originally did not have a closed expression

But lifting the magneto-roton state to super-space,
for super-wavevector (k, κ) ∈ C1,1

ΨMR,(k,κ)(z
1, · · · , zN ) :=

∫ (∏
i dθ

i
)∑

i exp
(
− ik∂zi

)
exp

(
− i

2kz
i
)
exp

(
− i

2κθ
i
)
ΨsLa

(
(z1, θ1), · · · , (zN , θN )

)
it reproduces the magneto-roton state for
even N , and the neutral fermion mode
when an (N +1)st electron is added [54]:

ΨMR,(k,κ)

magneto-roton
state ΨMR,k κΨNF,k

neutral-fermion
mode

super-
density excitationeven

N
no elec

tron
add

ed

odd N

add an electron

Hidden super-symmetry in fractional quantum Hall systems. This super-unification predicts hidden
supersymmetry in fractional quantum Hall systems — which is indeed (numerically) observed [106][81] (also [5,
§5]).

This all suggests that an accurate model for fractional quantum Hall systems should in fact itself originate on
superspace, and this is what we start with now.

3For N electrons in an effectively 2D material, and assumed to be completely spin-polarized by the transverse magnetic field, their
wavefunction Ψ is a skew-symmetric (by Pauli exclusion) C-valued function of N complex numbers (zi ∈ C)Ni=1. We omit normaliztion.
For the Read-Moore state N must (for Pf(−) to be defined) be even (which is harmless since N is a macroscopic number of electrons).
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2 Flux-Quantization on M5-Probes

The first task now is to understand the flux-quantization on M5-brane probes, according to [37][39][121].

We will not (need to) explain in full detail the (super-)geometry of probe branes nor of their (super-)gravity
backgrounds (full discussion is in [49][50]), but do offer the following broad dictionary, for orientation: 4

M5-Brane probes (namely sigma-model branes, in contrast to black branes) are 5-dimensional objects propagating
in a gravitational target space X (the “bulk”), along trajectories that are modeled by (super-)immersions of their
6D (and N = (2, 0)) worldvolume (super-)manifolds Σ

probe M5-brane
(super-)worldvolume Σ1,5 | 2·8+ X1,10 | 32 target/background

(super-)spacetime
ϕs

trajectory
(super-)immersion

(1)

Here the admissible (“on-shell”, meaning: satisfying the appropriate equations of motion) immersions ϕs are
controlled by the (super-)geometry of X – namely the brane’s trajectory is subject to the gravitational- and
Lorentz-forces exerted by the field content of X – but X itself remains unaffected by the choice of ϕs – meaning
that the (gravitational) back-reaction of the brane on its ambient spacetime is neglected; this is what makes the
brane but a probe of the background X.

Thereby the probe brane (Σ, ϕs) plays a double role:

(i) on the one hand it is like a (higher-dimensional) fundamental particle, an “observer” of the bulk X in the sense
of mathematical relativity,

(ii) on the other hand it is itself a (super-)spacetime with its own (quantum) field content:

Remarkably, the magic of super-geometry makes such purely super-geometric immersions ϕs (1) embody not
just the näıve (temporal-)spatial worldvolume trajectory, but also a 3-flux density Hs

3 on Σ [50, §3.3]. This
is (on-shell) the notorious “self-dual” flux density whose accurate quantization (traditionally neglected) is our
main concern here.

This second aspect is what we are concerned with for the purpose of modeling strongly-coupled quantum systems:

The (1+3)D worldvolume M1,3 of a quan-
tum material – or, for the intent of modeling
anyons, the effectively (1 + 2)D-worldvolume
M1,2 of a sheet-like material (e.g. an atomic
mono-layer akin to graphene) – is to be iden-
tified with a sub-quotient of the brane world-
volume, typically with a fixed locus (orb-
ifold singularity) inside the base of a fibration
(Kaluza-Klein reduction).

M5-brane
worldvolume

ambient bulk
spacetime

Σ1,5 Y 1,10

M1,2 Σ1,4 X1,9

quantum material
worldvolume

D4-brane
worldvolume

ϕ

M/IIA-
fibration

orbi-
singularity

Their flux-quantization (to recall from [117]) is then encoded in a choice of a fibration A p−→ B of classifying
spaces, subject to the constraint that the Bianchi identities for the (duality-symmetric) flux densities on bulk and
brane are the closure/flatness condition on lp-valued differential forms, where l(−) forms Whitehead L∞-algebras
of these classifying fibrations (dual to their minimal relative Sullivan model).

Given such a choice, the topological sector of the higher gauge fields on bulk and brane are given by maps from
the brane-immersion into the classifying fibration:

With these comments on perspective out of the way,
the plan of this section are the following topics:

(1.) Bianchi identities on magnetized M5-probes

(2.) Flux quantization in Twistorial Cohomotopy

(3.) Aside: Projective Spaces and their Fibrations

(4.) Orbi-worldvolumes and Equivariant charges

brane Σ Ω1
dR(−; lBA)clsd Σ A

bulk X Ω1
dR(−; lB)clsd X B

densities of
brane fluxes

ϕ

im
m
e
rsio

n

(lp)∗

charges of
brane fields

ϕ p

fi
b
ra

tio
n

o
f

c
la
ssify

in
g
sp

a
c
e
s

densities of
bulk fluxes

charges of
bulk fields

The first step of flux-quantization is to identify the Bianchi identities satisfied by the flux densities:

4All brane concepts we consider are well-defined and all conclusions have proofs – at no point do we rely on informal string theory
folklore beyond motivation.
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Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent
space

R1,10 | 32

super-Minkowski

isom
(
R1,10 | 32)

super-Poincaré

so(1, 10)
Lorentz

with its super-invariant 1-forms (cf. [49, §2.1]):

CE
(
R1,10 | 32) ≃ Ω•dR

(
R1,10|32)li

super-transl. invar. forms

≃ Rd

[
(Ψα)32α=1

(Ea)10a=0

]/(
dΨα = 0

dEa =
(
ΨΓa Ψ

) ) .

Remarkably, the quartic Fierz identities entail that [23][90][49, Prop. 2.73]:

G0
4 := 1

2

(
ΨΓa1a2

Ψ
)
Ea1Ea2

G0
7 := 1

5!

(
ΨΓa1···a5

Ψ
)
Ea1 · · ·Ea5

 ∈ CE
(
R1,10 | 32)Spin(1,10)

fully super-invariant forms

satisfy :
dG0

4 = 0

dG0
7 = 1

2G
0
4G

0
4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X̃ ↠ X given by

(Ψα)32α=1

(Ea)10a=0(
Ωab = −Ωba

)10
a,b=0

 ∈ Ω1
dR

(
X̃
) such that the

super-torsion

vanishes

dEa − Ωa
bE

b =
(
ΨΓa Ψ

)
,

and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:

Gs
4 := G4 + G0

4 := 1
4! (G4)a1···a4

Ea1 · · ·Ea4 + 1
2

(
ΨΓa1a2

Ψ
)
Ea1 Ea2

Gs
7 := G7 + G0

7 := 1
7! (G4)a1···a7

Ea1 · · ·Ea7 + 1
5!

(
ΨΓa1···a5

Ψ
)
Ea1 · · ·Ea5

Theorem [49, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (Gs
4, G

s
7):

The duality-symmetric
super-Bianchi identity

{
dGs

4 = 0

dGs
7 = 1

2 G
s
4G

s
4

}
is equivalent to

the full 11D SuGra
equations of motion!

The duality-symmetric
super-Bianchi identity

{
dGs

4 = 0

dGs
7 = 1

2 G
s
4G

s
4

}
is equivalent to

the full 11D SuGra
equations of motion!

Next, on the super-subspace R1,5 | 2·8+ R1,10 | 32ϕ0
fixed by the involution Γ012345 ∈ Pin+(1, 10) we have:

H0
3 := 0 ∈ CE

(
R1,5 | 2·8+

)Spin(1,5)
satisfies : dH0

3 = ϕ∗0G
0
4

To globalize this situation, say that a super-immersion Σ1,5 | 2·8+ X1,10 | 32ϕs
is 1/2BPS M5 if it is “locally

like” ϕ0, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

Hs
3 := H3 + H0

3 := 1
3! (H3)a1a2a3e

a1 ea2 ea3 + 0
(
ea<6 := ϕ∗sE

a
)

Theorem [50, §3.3]: On a super-immersion ϕs with B-field super-flux Hs
3 :

The super-Bianchi identity
{
dHs

3 = ϕ∗sG
s
4

}
is equivalent to

the M5’s B-field

equations of motion.
The super-Bianchi identity

{
dHs

3 = ϕ∗sG
s
4

}
is equivalent to

the M5’s B-field

equations of motion.

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are implied: G4 ↔ G7 and H3 ↔ H3.

Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:

F 0
2 :=

(
ψ ψ

)
= 0 ∈ CE

(
R1,5 | 2·8+

)Spin(1,5)
satisfies : dF 0

2 = 0

Globalizing this to Σ1,5 | 2·8+ via

F s
2 := F2 + F s

2 := 1
2 (F2)a1a2 e

a1ea2 + 0

we have on top of the above:

Theorem [122, p 7]:

The super-Bianchi identity
{
dF s

2 = 0
}

is equivalent to
the Chern-Simons

E.O.M.: F2 = 0.
The super-Bianchi identity

{
dF s

2 = 0
}

is equivalent to
the Chern-Simons

E.O.M.: F2 = 0.
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Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan ge-
ometry locally modeled on the 11D super-Minkowski spacetime R1,10 | 32 entails that on-shell 11D supergravity
probed by magnetized 1/2BPS M5-branes implies and is entirely governed by these Bianchi identities on super-flux
densities:

A-field dF s
2 = 0 dGs

4 = 0 C-field

self-dual
B-field

dHs
3 = ϕ∗sG

s
4 + θ F s

2 F
s
2 dGs

7 = 1
2G

s
4G

s
4

dual
C-field

M5 probe Σ1,5 | 2·8+ X1,10 | 32
SuGra bulk

ϕs

1/2BPS immersion

(2)

Here we have observed that the Green-Schwarz term F s
2F

s
2 may equivalently be included for any theta-angle θ ∈ R

without affecting the equations of motion (since, recall, the CS e.o.m. F s
2 = 0 is already implied by dF s

2 = 0).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic
and torsion charges of the fields. The choice of flux quantization according to Hypothesis H [37][39] is the following:

Admissible fibrations of classifying
spaces for cohomology theories with the
above character images (2). The homotopy
quotient of S7 is (i) for θ = 0 by the triv-
ial action and (ii) for θ ̸= 0 by the principal
action of the complex Hopf fibration.

θ = 0 S7�0U(1) S7 × CP∞ S7 HP 1

θ ̸= 0 S7�U(1) CP 3 HP 1

≃ hH

H-Hopf fibration

C-Hopf fibration

∼ tH

Twistor fibration

Proof. This may be seen as follows [39, Lem. 2.13]:

Since the real cohomology of projective space
is a truncated polynomial algebra,

H•
(
CPn; R

)
≃ R

[deg=2︷︸︸︷
c1

]/
(cn+1

1 ) H•
(≃BU(1)︷ ︸︸ ︷
CP∞; R

)
≃ R[c1]

H•
(
HPn; R

)
≃ R

[
1
2p1︸︷︷︸

deg=4

]/
(pn+1

1 ) H•
(
HP∞︸ ︷︷ ︸

≃ BSp(1) ≃ BSU(2)

≃ BSpin(3)

; R
)
≃ R[ 12p1]

the minimal dgc-algebra model for CPn needs
a closed generator f2 to span the cohomology
and a generator h2n+1 in order to truncate it;
analogously for HPn.

CE
(
lCPn

)
≃ Rd

[
f2

h2n+1

]/(
d f2 = 0

dh2n+1 = (f2)
n+1

)

CE
(
lHPn

)
≃ Rd

[
g4

g4n+3

]/(
d g4 = 0

d g4n+3 = (g4)
n+1

)

Furthermore, since the second Chern class of
an S

(
U(1)2

)
-bundle is minus the cup square

of the first Chern class (by the Whitney sum
rule)

BU(1) BSU(2)

−(c1)2 ←− [ 1
2p1 = c2

B(c 7→ diag(c,c∗))

the minimal model of CP 3 relative to that of
HP 1 needs to adjoin to the latter not only f2
but also a generator h3 imposing this relation
in cohomology.

CE
(
l
HP1CP 3

)
≃ Rd


f2
h3
g4
g7

/
d f2 = 0

dh3 = g4 + f2f2
d g4 = 0

d g7 = 1
2g4 g4


The resulting fibration of L∞-algebras is manifestly just that classifying the desired Bianchi identities (2)

(we are showing the case θ ̸= 0, which by isomorphic rescaling may be taken to be θ = 1):

Σ6 Ω1
dR

(
−; l

HP1CP 3
)
clsd

Ω•dR
(
Σ6

)
CE

(
l
HP1CP 3

) F2

H3

∈ Ω•dR(Σ
6)

∣∣∣∣∣ dF2 = 0

dH3 = G4 + F2 F2

⇔ ⇔

Σ11 Ω1
dR

(
−; lHP 1

)
clsd

Ω•dR(X
11) CE(lHP 1)

G4

G7

∈ Ω•dR
(
X11

)∣∣∣∣∣ dG4 = 0

dG7 = 1
2G4G4

ϕ (l tH)∗ ϕ∗ (l tH)
∗

8



Aside: Projective Spaces and their Fibrations – Here we used the following classical facts.
Consider:

division algebras R ↪−→ C ↪−→ H generically denoted K ∈
{
R, C, H

}
groups of units K× := K \ {0} understood with the multiplicative group structure

projective spaces KPn :=
(
Kn+1 \ {0}

)/
K×

higher spheres Sn ≃
(
Rn+1 \ {0}

)
/R

>0

K-Hopf fibrations are the quotient co-projections induced by ι : R>0 ↪−→ K
The classical Hopf fibrations hK are:

S0 ≃ R×/R
>0

S1
(
R2\{0}

)/
R>0

S1
(
R2\{0}

)/
R×︸ ︷︷ ︸

RP 1

ker

≃
hR ι∗

≃

S1 ≃ C×/R
>0

S3
(
C2\{0}

)/
R>0

S2
(
C2\{0}

)/
C×︸ ︷︷ ︸

CP 1

ker

≃
hC ι∗

≃

S3 ≃ H×/R
>0

S7
(
H2\{0}

)/
R>0

S4
(
H2\{0}

)/
H×︸ ︷︷ ︸

HP 1

ker

≃
hH ι∗

≃

The Hopf fibrations in higher dimensions are the attaching
maps exhibiting the topological cell-complex structure of
projective spaces [94], from which the (cellular) cohomology
follows readily.

S
(
Kn+1

)
∗

KPn KPn+1

hK
(po)

Further factor-fibrations arise by factoring the Hopf fibra-
tions via the stage-wise quotienting along

R
>0
↪−→ R ↪−→ C ↪−→ H.

Notably, the classical quaternionic Hopf fibration hH fac-
tors through a higher-dimensional complex Hopf fibration
followed by the
Calabi-Penrose twistor fibration tH [39, §2].

Equivariantization: Since the quotienting is by right actions,
these fibrations are equivariant under the left action of

Spin(5) ≃ Sp(2) :=
{
g ∈ GL2(H)

∣∣ g† · g = e
}
.

S1 C×/R>0

S7
(
H2\{0}

)/
R>0

S2 H×/C×

CP 3
(
H2\{0}

)/
C×

HP 1
(
H2\{0}

)/
H×

≃

≃

hC
complex

Hopf fibration

quaternionic
Hopf fibration

hH

≃

≃

tH
Calabi-Penrose
twistor fibration

≃

For example, the involution σ :=
[
0 1
1 0

]
∈ Sp(2)

swaps the two copies of H:

CP 3 HP 1(
H×H \{0}

)/
C×

(
H×H \{0}

)/
H×

(
H⊕H \{0}

)/
C×

(
H⊕H \{0}

)/
H×

CP 3 HP 1

tH

σ σ

tH

The resulting Z2-fixed locus is the 2-sphere:

(
CP 3

)Z2 ≃
(
H\{0}

)/
C× ≃ S2

(
HP 1

)Z2 ≃
(
H\{0}

)/
H× ≃ ∗

(tH)
Z2

This is the 2-sphere coefficient that will end up being responsible for stabilizing anyons on orbi-worldvolumes!
We next discuss how this comes about.
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Aside: Implications of Hypothesis H, in
view of traditional expectations for M-theory.

The plain Hypothesis H in the bulk says
that the non-perturbative completion of the
C-field in 11d supergravity involves a map
χ from spacetime to the homotopy type of
the 4-sphere, with the C-field gauge potentials
(Ĉ3, Ĉ6) exhibiting the flux densities (G4, G7)
as R-rational representatives of χ.

Maps
(
X; S4

)
χ Cohomotopical

charge sector

7→

Ω1
dR

(
X; lS4

)
clsd

SΩ1
dR

(
X; lS4

)
clsd

ch(χ) character
image(

G4, G7

)
C-field flux densities

7→ η S(G4, G7)

ch

η
S

(Ĉ3
,Ĉ6

)

ga
ug

e po
ten

tia
ls

In other words, this is the postulate that the
non-perturbative C-field is a cocycle in canon-
ical, unstable differential 4-Cohomotopy
π̂4 [34, §4][52, §3.1][40, Ex. 9.3].

As an immediate plausibility check: This im-
plies, from the well-known homotopy groups
of spheres in low degrees, that:

(
Ĉ3, Ĉ6

)
full nonperturbative
11d SuGra C-field

canonical differential
non-abelian (unstable)

4-Cohomotopy

π̂4(X)

plain
non-abelian (unstable)

4-Cohomotopy

π4(X)

HdR

(
X; lS4

)
lS4-valued de Rham cohomology

∈ χ

topological sector

(G4,G7)
flux

densities

integral quantization of charges carried by sin-
gular M5-brane branes and

π4
(
R10,1 \ R5,1

)
= π4

(
R5,1 × R+ × S4

)
= π4(S4) = π4(S

4) = Z
integral quantization of charges carried by sin-
gular M2-branes... plus a torsion-contribution
(a first prediction of Hypothesis H).

π4
(
R10,1 \ R2,1

)
= π4

(
R2,1 × R+ × S7

)
= π4(S7) = π7(S

4) = Z ⊕ Z12

Hypothesis H with curvature corrections. More generally, the curvature corrections from the coupling to
the background gravity are postulated to be reflected in tangentially twisted 4-Cohomotopy [37], analogous to the
well-known twisting of the RR-field flux-quantization in K-theory by its background B-field:

Hypothesis K Hypothesis H

KU0�PU(H)

X9 BPU(H)

B2U(1)

twisted
K-theoryRR-fie

ld

twist by
background
B-field

∼

S4�Ŝp(2)

T 2 ×X8 BŜp(2)

BSpin(8)

twisted
Cohomotopy

Fivebrane structure

C-fie
ld

twist bybackgroundgravity

To distinguish M2/M5-charge, the
tangential twisting needs to pre-
serve the H-Hopf fibration ⇒ tan-
gential Sp(2) ↪→ Spin(8)-structure
[37, §2.3]. With this, integrality
of M2’s Page charge & anomaly-
cancellation of the M5’s Hopf-WZ
term follows from trivialization of
the Euler 8-class, which means lift

to the Fivebrane 6-group Ŝp(2) →
Sp(2) [36, §4].

This implies [37, Prop. 3.13][36, Thm. 4.8]:

(i) half-integrally shifted quantization of M5-
brane charge in curved backgrounds, and

[G̃4] := [G4]︸︷︷︸
C-field
4-flux

+ 1
2

(
1
2p1(TX

8)︸ ︷︷ ︸
integral Spin-

Pontrjagin class

)
∈ H4

(
X8; Z

)
(ii) integral quantization of the Page charge
of M2-branes.

2[G̃7] := 2
(
[G7] +

1
2 [H3 ∧ G̃4]

)
∈ H7(X̂8;Z)

Both of these quantization conditions on M-brane charge
are thought to be crucial for M-theory to make any sense.

Previously, item (i) had remained enigmatic and item
(ii) had remained wide open.

But there is more:

Provable implications from Hypothesis H
of subtle effects expected in M-theory:



- half-integral shift of 4-flux [37, Prop. 3.13]

- DMW anomaly cancellation [37, Prop. 3.7]

- the C-field’s “integral EoM” [37, §3.6]
- M2 Page charge quantization [36, Thm. 4.8]

- integrality of 1
6 (G4)

3 [52, Rem. 2.9]

- M5-brane anomaly cancellation [112]

- non-abelian gerbe field on M5 [38]

It is these results which suggest that Hy-
pothesis H goes towards the correct flux-
quantization law for the C-field in M-theory.
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Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to orbifolds 5 by generalizing the
cohomology of the charges to equivariant cohomology [111].

In terms of classifying spaces this simply
means that all spaces are now equipped with
the action of a finite group G and all maps are
required to be G-equivariant.
We take G := Z2 and the classifying fibration
to be the twistor fibration p := tH equivari-
ant under swapping the H-summands,

orbi-
worldvolume

Σ A : CP 3

orbi-
spacetime

X B : S4

G orbi-brane
charges

ϕ

G

p
equivariant
classifying
fibration...

Z2

tH
...for equivariant

twistorial Cohomotopy

G
orbi-bulk
charges G Z2

and the brane/bulk orbifold we take to be as on p. 3:

The orbi-brane diagram for a flat M5-brane
wrapped on a trivial Seifert-fibered orbi-singularity.
Shaded is the Z2-fixed locus/orbi-singularity.

We are adjoining the point at infinity to the space
R2

∪{∞} ≃
homeo

S2 which is thereby designated as

transverse to any worldvolume solitons to be mea-
sured in reduced cohomology.

Σ := R1,0 × R2
∪{∞} × S1 × R2

sgn

X := R1,0 × R2
∪{∞} × S1 × R2

sgn × R5

time
trnsvrs space
to solitons

M/IIA-
circle

orbi-
cone

trnsvrs space
to M5-brane

Z2

ϕ

Z2

Z2

Z2

But since the cone
Z2 ↷ R2

sgn is equivari-
antly contractible,

Z2 ∗ ∗∼
hmtp

Z2

the inclusion of the Z2-
fixed loci is actually a ho-
motopy equivalence

ΣZ2 Σ

XZ2 X

∼
hmtp

ϕZ2

Z2

ϕ

∼
hmtp

G

Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on the orbi-singularity where they take values in 2-Cohomotopy:

Σ CP 3

X S4

Z2

ϕ

Z2

tH

Z2
charges on
orbifold Z2


≃


ΣZ2 (CP 3)Z2 S2

XZ2 (S4)Z2 ∗

ϕZ2 t
Z2
H

charges localized on orbi-singularity


≃

{
R2
∪{∞} × S

1 S2

charges in 2-Cohomotopy
of B-field solitons

on M5 orbi-singularity

}

Moduli space of worldvolume solitons. To be precise, the solitonic charges are to be measured in the reduced
2-Cohomotopy classified by pointed maps, enforcing the condition that solitonic fields vanish at infinity [117, §2.2].

In the strongly-coupled situation, where the M/IIA circle de-compactifies to R1, the vanishing-at-infinity must
also be applied here, whence the moduli space of topological solitons is the loop space of the reduced 2-Cohomotopy
moduli of the transverse space:

moduli space of solitons
on M5 orbi-singularity

Maps∗
(
R2
∪{∞} ∧ S

1, S2
)
≃ ΩMaps∗

(
R2
∪{∞}, S

2
) loop space of

moduli space of solitons
on D4 orbi-singularity

Outlook. Strinkingly, as we explain next,
this is equivalently a space of worldsheets
of strings in R3 with unit charged endpoints
forming oriented framed links! [119]

Such link diagrams are just the envisioned
topological quantum circuit protocols, and
their framing regularizes the anyonic phase
observables (“Wilson loop observables”). Figure from Rowell ([109], following [108, Fig. 2]).

5For brevity we consider here only “very good” orbifolds, namely global quotients of manifolds by the action of a finite group G.
This is sufficient for the present purpose and anyways the case understood by default in the string theory literature.
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3 Cohomotopy Charge of Solitons

Remarkably, there is an equivalence between Cohomotopy of spacetime/worldvolumes and Cobordism classes of
submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge [113, §2.2] [110, §2.1]:

The Pontrjagin theorem
[101][75, §IX] identifies the
unstable n-Cohomotopy of
a closed manifold with the
cobordism classes of its nor-
mally framed submanifolds
of co-dimension n.

The Cohomotopy charge
of a normally framed sub-
manifold (aka scanning
map or Pontrjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighbourhood, else to ∞.

Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

Under this relation,
homotopy of charge maps
corresponds to nrml. framed
cobordism of submnflds.

The cobordism relation ex-
hibits a form of pair cre-
ation/annihilation of sub-
manifolds carrying opposite
Cohomotopy charges.

normal
framing
in space

brane

opposite
normal
framing

anti-brane

normal framing
in spacetime

spacetime

p
a
ir

c
r
e
a
t
io

n

↼−−−−−−−−

−−−−−−−−⇁ an
n
ih

il
a
t
io

n

space

fframing
charge w w ⇌ f

creation /
annihilation

branes
anti-
brane

When making more ambi-
ent dimensions available, the
cobordism classes eventually
(quickly) exhibit stabiliza-
tion on abelian cobordism
cohomology groups. (This
might relate Hypothesis H to
Vafa’s cobordism conjecture
cf. [113, §4]).

This “linearized” Cohomo-
topy/Cobordism is a form
of K-theory: algebraic K-
theory over the “absolute
base field F1” (cf. [17, Thm.
5.9][8, Cor. 2.25]).

non-abelian
Cohomotopy

π•

stable
Cohomotopy

S•
stable framed
Cobordism

MFr•

KF •1
algebraic K-theory of

“field with one element”

linearize

(i.e.: stabilize) Barratt-Priddy

&
Quillen

Pontrjagin & Thom

Thus flux quantization in Coho-
motopy lifts to M-theory the same
arguments that motivated topo-
logical K-theory in type II string
theory: its character map repro-
duces the Bianchi identities & its
equivalence relation models (anti-
)brane pair-creation/annihilation.
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Moduli space of soliton configurations. But the Pontrjagin theorem concerns only the total cohomotopical
charge, identifying it with the net (anti-)brane content. Beyond that we have the whole moduli space of charges

(considered now specialized to our 2D
transverse space), and Segal’s the-
orem [125] says that the cohomo-
topy charge map (scanning map) iden-
tifies this with a moduli space of
brane positions, namely with the group-
completed configuration space of points
[19][138][70]:

moduli space
of solitonic

brane charges
Maps∗

(
R2
∪{∞}, S

2
) 2-Cohomotopy

π2
(
R2
∪{∞}

)
Z

moduli space
of solitonic

brane positions
G
group-

completed

Conf(R2)
config space

Cob2Fr(R2)
2-Cobordism
(unstable)

[−]

net charge

∼

Segal
theorem

∼

Hopf degree
theorem

∼

Pontrjagin
theorem

[−]

net brane content

∼

where the configuration space of points
is the space of finite subsets of R2 – here
understood as the space of positions of
cores of solitons of unit charge +1,

Conf(R2) =

 tran
sve

rse
plan

e positions of
soliton cores


and its group completion G(−) is the topological completion of the topological
partial monoid structure given by disjoint union of soliton configurations.
Näıvely this is given by including also anti-solitons in the form of configurations of
±-charged points, topologized such as to allow for their pair annihilation/creation
as shown in the left column on the right.
Remarkably, closer analysis reveals [95] that the group completion G(−) produces
configurations of strings (extending parallel to one axis in R3) with charged
endpoints whose pair annihilation/creation is smeared-out to string worldsheets
as shown in the right column.

This means [119] that the vacuum-to-vacuum soliton scattering processes,
forming the loop space ΩGConf(R2), are identified with framed links ([96, pp 15]),
for instance

subject to link cobordism (cf. [83]):

Configurations of charged

points strings

∅

∅

tracing out

worldlines worldsheets

∅

∅

It follows [119, Thm 3.17] that the charge of a soliton
scattering process L is the sum over crossings of the

crossing number #

( )
= +1 , #

( )
= −1 ,

which equals the linking+framing number:

ΩGConf(R2) ΩMaps∗/
(
R2
∪{∞}S

2
)

π3(S
2) ≃ Z

L #L

∼ [−]

total crossing number =

linking + framing number

But this is precisely the Wilson loop observable
of L in (abelian) Chern-Simons theory! [119, §4]
As we explain next.
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The k-Soliton sector. More generally, we may con-
sider loops based in the kth connected component of
the moduli space, corresponding to scattering pro-
cess from k to k net number of solitons.

net charge k Hopf degree k

GConfk(R2) Maps∗k
(
R2
∪{∞}, S

2
)

GConf(R2) Maps∗
(
R2
∪{∞}, S

2
)

∼

∼

Since the double loop space Maps∗
(
R2
∪{∞}, S

2
)
admits the structure of a

topological group, all these connected components have the same homo-
topy type, and hence these scattering processes L are again classified by
the integer total crossing number #L which is the abelian Chern-Simons
Wilson-loop observable.

Ωk GConf(R2)

π0Ωk GConf(R2) Z

L 7→ #L

∼

For instance, a generic k = 3 process looks like this:

and via the framed cobordism moves

it computes to the trivial scattering process accompanied by #L vacuuum pair braiding processes:

Chern-Simons level. We will see below further meanings of the number k:

This integer k is equivalently

 the number of fractional quasi-hole vortices in a quantum Hall system,
the level of their effective abelian Chern-Simons theory,
the maximal denominator for filling fractions of their quantum states.

Generally, we will recover in a novel non-Lagrangian way the features of quantum Chern-Simons theory that are
traditionally argued starting with the kth multiple of the local Lagrangian density a ∧ da for a gauge potential
1-form a.

The situation on the 2-Sphere.
Furthermore consider k solitons on the actual 2-sphere S2.
Here the 2-Cohomotopy moduli space satisfies (cf. [58]):

π0Ωk Maps
(
S2, S2

)
≃ Z2|k| ,

and the long homotopy fiber sequence induced by point evaluation shows that the generator of this cyclic group is
again identified with the basic half-braiding operation:

Maps∗
(
R2
∪{∞}, S

2
)

Maps
(
S2, S2

)
S2

π2
(
S2

)︸ ︷︷ ︸
Z

π0ΩkMaps∗
(
R2
∪{∞}, S

2
)︸ ︷︷ ︸

Z

π0ΩkMaps
(
S2, S2

)︸ ︷︷ ︸
Z2|k|

π1
(
S2

)︸ ︷︷ ︸
1[ ]

fiber of...

point-
evaluation

2k
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With flux-quantized fields being equipped with a classifying space A, there is a neat way to directly obtain the
topological quantum observables – via the following observation:

Topological flux observables in Yang-Mills theory – Theorem [118]. For G-Yang-Mills theory on R1,1×Σ2,
with a choice of Ad-invariant lattice Λ ⊂ g:
(i) Non-perturbative quantization of the algebra of flux observables through the closed surface Σ2 is given by the
group C∗-algebra C[−] of the Fréchet-Lie group of smooth maps Σ2 → G⋉ (g/Λ),
(ii) the corresponding group algebra of topological observables, depending only on the connected components of
flux, coincides with the Pontrjagin homology algebra of pointed maps (R1 × Σ2)∪{∞} −→ B

(
G⋉ (g/Λ)

)
:

C
[
C∞

(
Σ2, G

)
⋉ C∞

(
Σ2, (g/Λ)

)]
non-perturbative quantum algebra of

observables on flux through Σ2

C
[
H0

(
Σ2; G

)
⋉H1

(
Σ2; Λ

)]
sub-algebra of

topological observables

H0

(
Maps∗((R1 × Σ2)∪{∞}, B(G⋉ (g/Λ)); C

)
Pontrjagin homology algebra of
moduli space of soliton charges

π0
≃

For example in electromagnetism,
with G = U(1) and Λ := Z ↪−→ R:

C
[
H1(Σ2;Z)︸ ︷︷ ︸

electric

×H1(Σ2;Z)︸ ︷︷ ︸
magentic

]
≃ H0

(
Maps∗((R1 × Σ2)∪{∞}, BU(1)×BU(1)︸ ︷︷ ︸

classifying space for
Dirac flux quantization

); C
)

This allows to generalize:
Topological flux observables of any higher gauge theory.

For a higher gauge theory flux-quantized in A-cohomology
the quantum algebra of topological flux observables
on a spacetime of the form R1,1 × ΣD−2

is the Pontrjagin homology algebra of the soliton moduli

hence in deg = 0 is the group algebra of
vacuum soliton processes “on the light-cone”:

Obs• := H•

(
Maps∗((R1 × ΣD−2)∪{∞}, A); C

)
≃ H•

(
ΩMaps(ΣD−2, A); C

)
Obs0 = C

[
π0ΩMaps

(
ΣD−2, A

)]
For note that the star-involution
is given by the combination of

{
- complex conjugation (time reversal)
- loop reversal (hence x-reversal)

where R1,1 ≃ R⟨t, x⟩ ,

and the
operator
product
is given
by loop
concate-
nation:



t

x

Σ



·



t

x

Σ



=



t

x

Σ



topological classes
of

vacuum-to-vacuum
processes of

quantized flux
along t− x

and their
concatenation
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4 The topological Quantum States

To summarize so far, we have seen that the topological sector of the flux-quantized phase space of solitons on
magnetized M5-probes Σ wrapping Seifert orbi-singularities is

Maps

Σ
↓
X
,
CP 3

↓
S4

Z2

Maps∗/
(
R2
∪{∞} ∧ S

1, S2
)

Ω0 GConf(R2) π0 Ω0 GConf(R2) Z
L #L

topological sector
of flux-quantized

phase space

2-Cohomotopy
cocycle space

loop space of
group-completed

configuration space

net
charge

≃ ≃ [−] ≃

The topological quantum states of this system now follow [118][119, §4] by general algebraic quantum theory:

The gauge-invariant topological observables
form the (higher) homology of this space

Obs• :=
H•

(
Ω0 GConf(R2); C

) making a (star-)algebra under concatenation
(reversion) of loops — the Pontrjagin algebra.

Ω0 GConf(R2) Ω0 GConf(R2)

H•
(
Ω0 GConf(R2); C

)
H•

(
Ω0 GConf(R2); C

)
H•

(
Ω0 GConf(R2); C

)
rev

loop reversal

Hermitian conjugation
of quantum observables

rev∗

Pontr. antipode

(-) cmplx
cnjgtn

This means that time-reversal goes
along with reversal of looping around
the M/IIA-circle, whence we are deal-
ing with a version of discrete light-cone
quantization in their topological sectors.

The basic ordinary (de-
gree=0) observables detect
the deformation class of a
framed link L.

Obs0 C
[
π0

(
Ω0GConf(R2)

)]
C[Z]

OL := δ[L] = δ#L

OL · OL′ = δL⊔L′ = δ#L+#L′

∼ ∼ Since these observables commute
among each other, their pure topolog-
ical quantum states are their (real &
positive) algebra homomorphisms:

PureQStates0 ≃
on commuting
observables

{
ρ : Obs0

homo−−−−→ C
∣∣∣∣ ρ ∈ MixedQStates0

}

MixedQStates0 :=

{
ρ : Obs0

linear−−−−→ C
∣∣∣ ∀
O∈Obs•

(
ρ
(
O∗

)
= ρ(O)∗

reality

, ρ(O∗ ·O) ≥ 0 ∈ R ↪→ C
(semi-)positivity

)
, ρ(1) = 1
normalization

}
.

Therefore pure topological states |m⟩
are determined by an anyonic phase
exp(πi/m) assigned to any crossing,

accumulating to

the exponentiated

crossing number

Obs0 C

OL 7−→ e
πi
m#L

⟨m|−|m⟩

The resulting expectation values
are [119, §4] just those of
Wilson loop observables in
abelian Chern-Simons theory,
as expected for abelian
anyons.

⟨m|OL|m⟩ = exp
(
πi
m #L

)
= exp

(
πi
m

( ∑
i ̸=j∈π0(L)

lnk(Li, Lj)
linking
numbers

+
∑

i∈π0(L)

frm(Li)
framing
numbers

))

For example:

〈
m

∣∣∣∣∣ ++

+

∣∣∣∣∣m
〉

=

〈
m

∣∣∣∣∣
∣∣∣∣∣m

〉
= exp

(
πi 3

m

)
Applying the GNS-construction to such state produces a 1-dimensional Hilbert space

C[Z]︷ ︸︸ ︷
C[θ, θ−1]

/(
eπi/m − θ

)
≃ C,

which is as expected for the quantum states of abelian Chern-Simons theory on R2
∪{∞}. (More on this on p 17.)

Remark. At this point m ∈ R ̸= 0 may be irrational, but its rationality will be enforced by requiring compatibility
with states on more general domain surfaces, see pp. 17 and p. 18.

Remark. These solitonic anyons are not yet the controllable/parameterized defect anyons that could be used for
topological braid quantum gates operating by adiabatic movement of anyonic defects or (quasi-)holes. But the
latter arise as defect points among the former, we come to this on p. 19.

Remark. The appearance of framed links along just the above lines is known in the condensed matter theory of
anyonic defect lines in the 3D “8-band model” ([42, pp 15], following [128]): From this perspective, the Cohomotopy
classifying space S2 plays the role of the classifying space for electron band Hamiltonians on a crystal lattice.
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Anyonic topological order on Flux-quantized M5-probes. We now identify the promised topological order
on M5-probes flux-quantized in equivariant twistorial Cohomotopy, by considering M5s wrapping closed surfaces:

Anyonic quantum observables on closed surfaces.

Consider now a closed orientable surface Σ2
g of genus g ∈ N

to replace the previous factor R2
∪{∞} in the brane diagram:

Σ1,5 := R1,0 × Σ2
g × S1 × R2

sgn

Z2 Z2

Directly analogous analysis as before gives that the topological quantum observables on the flux-quantized self-
dual tensor field form the group algebra of the fundamental group of the 2-cohomotopy moduli space in the kth
connected component

Obs0
(
Σ2

g

)
:= H0

(
Ωk Maps

(
Σ2

g, S
2
)
; C

)
≃ C

[
π0Ωk Maps

(
Σ2

g, S
2
)]

, (3)

where k ∈ N is the degree of the classifying maps, corresponding under the Pontrjagin theorem to a net number of
k (anti-)solitons on Σ2

g.

Theorem (using [58, Thm 1][76, Thm 1][69, Cor 7.6]). This group of 2-cohomotopy charge sectors is identified as
twice the integer Heisenberg group extension (cf. [78]) of Z2g by Z2|k|

6:

π0ΩkMaps
(
Σ2

g, S
2
)
≃

(
a⃗, b⃗, [n]

)
∈ Zg × Zg × Z2|k| ,

(
a⃗, b⃗, [n]

)
·
(
a⃗′, b⃗′, [n′]

)
=(

a⃗+ a⃗′, b⃗+ b⃗′, [n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗ ]
)
 =: Ẑ2g

Ground state degeneracy.
Hence the observable group-
algebra Obs0 for g = 1, Σ2

1 = T 2,
has generators


Wa := (1, 0, [0])

Wb := (0, 1, [0])

ζ := (0, 0, [1])

 subject to the rela-
tions


Wa ·Wb = ζ2Wb ·Wa

ζ2k = 1

[ζ,−] = 0

 .

This algebra is just the observable algebra expected [130, (5.28)] for anyonic topological order on the torus as
described by abelian Chern-Simons theory at level k. The non-trivial irreps have:

- dimension k, this being the expected ground state degeneracy on the torus,

- are labeled by ν := p/k , p ∈ {1, 2, · · · , k}, as expected for fractional filling factors.

Hilbert space of
quantum states
on the torus

HT 2 := Span
(∣∣[n]〉, [n] ∈ Z|k|

)
∈ Obs0(T

2)Modules , dim
(
HT 2

)
= k ,

Wa

∣∣[n]〉 := e2πinν
∣∣[n]〉

Wb

∣∣[n]〉 :=
∣∣[n+ 1]

〉
ζ
∣∣[n]〉 := eπiν

∣∣[n]〉
Modular equivariance. Strikingly, in this construction modular
symmetry is manifest, since the looped mapping space is canon-
ically acted on by the mapping class group MCG of Σ2

g (cf. [31,
§2.1]), simply by precomposition of maps! Inspection of the above
theorem (cf. [58, bottom of p 153]) shows that this MCG-action

action identifies indeed as the canonical action of Sp2g(Z) on Ẑ2g.

MCG(Σ2
g)︷ ︸︸ ︷

π0Homeosor
(
Σ2

g

)
↷ π0Ωk Maps

(
Σ2

g, S
2
)

Sp2g(Z) ↷ Ẑ2g

[31, §6.3] ≃

Hence we may ask for a lift of the Ẑ2g action on quantum

states to an action of the semidirect product Ẑ2g⋊Sp2g(Z).
For g = 1 and even k one readily checks that this gives the
modular transformations of states known [85, pp 65] from
abelian Chern-Simons theory:

modul
ar

actio
n on obse

rvab
les

m(W ) ·
and

on state
s

m(
∣∣[n]〉) = m

(
W

∣∣[n]〉) , ∀


m ∈ Sp2g(Z)

W ∈ Ẑ2g∣∣[n]〉 ∈ Hg

S
(∣∣[n]〉) = 1√

|k|

∑
[n̂]

e2πi
n n̂
k
∣∣[n̂]〉 , T

(∣∣[n]〉) = eiπ
n2

k
∣∣[n]〉 .

Generally, writing (e⃗i ∈ Zg)g1=1

for the canonical basis vectors,
the observable group-algebra
Obs0 for general g has generators


W i

a := (e⃗i, 0, [0])

W i
b := (0, e⃗j , [0])

ζ := (0, 0, [1])

, 1 ≤ i ≤ g

 subject to
the relations


W i

a ·W
j
b = δijζ2W j

b ·W i
a

ζ2k = 1

all other commutators vanish


Requiring the reps Hg of this algebra to analogously support modular equivariance requires them to have dimension
|k|g — which is the result expected [85, p 40] for abelian topological order on Σ2

g:
Hilbert space of
quantum states

on genus=g surface
HΣ2

g
∈ Obs0(Σ

2
g)Modules , dim

(
HΣ2

g

)
= |k|g ,

6Here Zn := Z/(n) (with Z0 = Z) are the (in-)finite cyclic groups.
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Here the generators W i
a,b correspond to the classical generators of the surface’s fundamental group:

Oriented closed surfaces are all obtained (cf. [44, p 100]):
by identifying in the regular 4g-gon, for genus g ∈ N:
(i) all boundary vertices with a single point

and, going clockwise for r ∈ {0, · · · , g − 1},
(iia) the 4r+1st boundary edge with the reverse of the 4r+3rd,

(iib) the 4r+2nd boundary edge with the reverse of the 4r+4th.

sphere

Σ2
0 ≃ S2

torus

a

bΣ2
1 ≃ T2

2-
ho
le
d

to
ru
s

a1

b1

a2

b2

Σ2
2

In other words, the homotopy type of the surface sits
in a (pointed) homotopy co-fiber sequence of this form:

S1
∨

g

(
S1
a ∨ S1

b

)
Σ2

g S2
∏

i[ai,bi] δ

whence its fundamental group is the quotient of the free group
on 2g generators (ai, bi)

g
i=1 by the normal subgroup generated

by that polygon’s boundary:
π1

(
Σ2

g

)
≃

〈
a1, b1, · · · , ag, bg

〉/∏
i[ai, bi]

2-Cohomotopy moduli of oriented closed surfaces. Mapping this co-fiber sequence into S2 and applying
π0Ωk, it collapses [58, Prop. 2] to twice [76, Thm 1] the integer Heisenberg central extension of Z2g by Z2|g|:

1 π0Ωk Maps
(
S2, S2

)︸ ︷︷ ︸
Z2|k|

π0Ωk Maps
(
Σ2

g, S
2
)︸ ︷︷ ︸

integer Heisenberg group

π0Ω∗Maps∗
(∨

g(S
1
a ∨ S1

b ), S
2
)︸ ︷︷ ︸

Z2g

1 .δ∗

The phase generators. Hence these inte-
ger Heisenberg groups inject into each other
as the surfaces are surjected onto each other
by collapsing pairs of 1-cycles.

Σ2
g Σ2

g+1

π0Ωk Maps
(
Σ2

g, S
2
)

π0Ωk Maps
(
Σ2

g+1, S
2
)

Ẑ2g Ẑ2(g+1)

p

≃

π1(p
∗,k)

≃

Thereby their central generator ζ represents
the previously identified half-braiding opera-
tion of solitons on these surfaces.
This is the “reason” for the central extension
being by Z2|k| instead of just Z|k|:
The phase generator ζ does not correspond to
full rotations (such as around the square on
the right) but to “particle exchange” by half-
braiding — as expected for anyons.

Σ2
0 ≃ S2

Wa

WbΣ2
1 ≃ T2

Z2|k| Ẑ2

[ p
a
rtic

le
e
x
ch

a
n
g
e

]
7−→

p
h
a
se

g
e
n
e
ra

to
r

ζ 7→ eπiν

p

Non-orientable closed surfaces are all obtained by iden-
tifying in the regular 2h-gon, for crosscap number h ∈ N≥1:
(i) all boundary vertices with a single point

and, going clockwise for r ∈ {0, · · · , h− 1},
(ii) the 2r+1st boundary edge with the reverse of the 2r+2nd

pr
oj
ec
ti
ve

pl
an
e

a

Σ2
1
= RP 2

K
le
in

b
o
tt
le

a

b

Σ2
2

In other words, the homotopy type of the surface sits
in a (pointed) homotopy co-fiber sequence of this form:

S1
∨

h S
1 Σ2

h
S2

∏
i a

2
i δ

2-Cohomotopy moduli of non-orientable closed surfaces. Mapping this co-fiber sequence into S2 and
applying π0Ωk, it induces [58, Prop. 3] an extension of Zh−1 by Z2 which as such is trivial [76, Thm. 2]:

1 coker
((

Σ
∏

ia
2
i

)∗)︸ ︷︷ ︸
Z2

π0Ωk Maps∗
(
Σ2

h
, S2

)︸ ︷︷ ︸
Z2×Zh−1

ker
((∏

ia
2
i

)∗)︸ ︷︷ ︸
Zh−1

1 .δ∗

Again, the exponent appearing, h− 1, is just that expected for abelian
Chern-Simons ground state degeneracy, where (cf. [14, (73)]):

dim
(
HΣ2

h

)
= |k|h−1
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Defects via punctured worldvolumes. It is now immediate to bring adiabatically movable defect anyons into
the picture, missing in traditional discussion but crucially needed for topological quantum gates (cf. [89, §3]).
Namely we may simply further generalize the surfaces Σ2

g

to their n-punctured versions, obtained by deleting the po-
sitions of a subset of points – thus literally creating defects!

Σ2
g,n := Σ2

g,n \ {s1, · · · sn}

for {s1, · · · sn} ⊂ Σ2
g

That these defects are void of the dynamical solitons is elegantly
enforced by identifying all their positions with the point-at-infinity.

(
Σ2

g,n

)
∪{∞} e.g.: R2

∪{∞} ≃ (Σ2
0,1)∪{∞}

In this generality, our previous brane diagram now is:

Σ1,6 := R1,0 ×
(
Σ2

g,n

)
∪{∞} × S1 × R2

sgn ,

Z2 Z2

and, by the same argument as before, the alge-
bra of topological quantum observables on co-
homotopically flux-quantized fields becomes: Obs0

(
Σ2

g,n

)
:= H0

(
Ωk Maps∗

(
(Σ2

g,n)∪{∞}, S
2
)
; C

)
.

A more explicit description of this algebra of observables may not be available at the
moment. But we can immediately see that these are quantum observables on defect
anyons:

Braid group action... This algebra of observables is faithfully acted on by the mapping
class group of the punctured surface – again simply by precomposition of maps.
But, with punctures, that group is now an extension (cf. [86, Thm. 3.13]) of the plain
mapping class group by the surface braid group that acts by (“adiabatically”) moving
the defects around each other!

1 −→ Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) −→ 1

surface braid group
mapping class group
of punctured surface

mapping class group
of plain surface

 In deducing this, we observed that

Homeos∗
(
(Σ2

g,n)∪{∞}
)
≃ Homeos

(
Σ2

g,n

)
since (−)∪{∞} is functorial on homeos.


...on defect points. Concretely, we have
with

(
Σ2

g,n

)
∪{∞} ≃ Σ2

g ∨
∨
n−1

S1 (cf. [61, p 11]):
π1Maps∗

((
Σ2

g,n

)
∪{∞}, S

2
)
≃ π1Maps∗

(
Σ2

g, S
2
)
× Zn−1

≃
g=0

Zn

Defect-braiding on M5s as a quantum-gravitational effect.
Noting that the mapping class group is equivalently the group of
large diffeomorphisms of the punctured surface (cf. [31, p 45]),

π0Homeos∗or
(
(Σ2

g,n)∪{∞}
)

≃ π0 Diffeosor(Σ
2
g,n)

we see that braiding of anyonic defects is reflected in equipping the moduli spaces
of cohomotopical charges on the brane worldvolume with the action by diffeomor-
phisms, hence by passing to the action groupoid of moduli quotiented by diffeos.

GnrlCovariantModuli(Σ)

≃ Moduli(Σ) � Diffeos(Σ)

But this is the hallmark of generally covariant systems (cf. [27]), such as are our probe M5-branes.

Defect para-statistics. So the covariantized quan-
tum observable algebra locally factors through the
group algebra of the wreath product (cf. [10, §8]) of

{
1. the braid phase group Z of the solitonic anyons with
2. the permutation group Symn of the defect anyons

Zn−1 ⋊ Brn Zn ⋊ Brn Zn ⋊ Symn ≃
{(

(ni)
n
i=1, σ

) ∣∣ ((n•), σ) · ((n′•), σ′) =
(
(n• + n′σ(•)), σσ

′)}
Just such para-statistical (cf. [134]) wreath-group statistics of defect anyons is seen in condensed matter [42].

Solitonic vs. Defect anyons. By
the previous discussion, we are to think
of Obs0(Σ

2
g,n) as the quantum observ-

ables on abelian solitonic anyons prop-
agating on the punctured surface Σ2

g,n.
But the dependence of these observables
on the external parameters of n defect
positions makes them “collectively” rep-
resent braiding of defects.

anyons as seen
in Cohomotopy

nature number braiding

solitonic anyons
concentrations
of flux density

net charge,
CS-level: k

by (LC-)time
evolution

defect anyons
punctures in
worldvolume

n in Σ2
g,n

by worldvolume
diffeomorphisms

field solitons
flux-quantized
in Cohomotopy:
quasi-particles/
-holes/vortices

worldvolume
punctures:
defects
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5 Conclusion: Better Anyon Theory

Conclusion – New theory of anyonic topological order, engineered on flux-quantized M5s. In summary,
we have seen that global completion by flux-quantization of 11D supergravity with M5-probes (here: in equivariant
twistorial cohomotopy – “Hypothesis H”), makes the quantized topological sector of the self-dual tensor field on
M5-probes (wrapping Seifert orbi-singularities) reproduce key phenomena of abelian Chern-Simons theory thought
of as an effective field theory for abelian anyons in fractional quantum Hall (FQH) systems:

(i) Flux tubes bound to anyons. The central assumption in the traditional heuristic understanding of the
FQHE is that the anyonic solitons have flux quanta “attached” to them [126, pp 883]. It is crucially this assumption
which motivates and justifies abelian Chern-Simons theory as an effective field theory for FQH anyons, since vari-
ation of the sum of the abelian Chern-Simons term
with the standard source term predicts that the gauge
field flux is localized at the source particles (cf. [130,
(5.25)][139, (3.6)]).

In contrast, in the present approach this effect is a
consequence of cohomotopical flux-quantization,
via the Pontrjagin theorem: The classifying map of the
2-Cohomotopy charge identifies an open neighbourhood
of each anyon with the 2-sphere minus its point at infin-
ity, and the flux density F2 is the pullback of the sphere’s
volume form along this map (cf. p 28), hence supported
on just these open neighbourhoods.

classifying mapn

∞

anyon

worldline
fluxF
2 =
n ∗(dvolS 2)

2-sphere S2

(ii) Anyons subject to each other’s Aharonov-Bohm phases.
Traditional discussion furthermore assumes from these attached flux tubes that the anyons must pick up

Aharonov-Bohm quantum phases when circling around each other. While this is plausible, rigorous quantum
field-theoretic derivation of this statement may not have found much attention.
In contrast, in the approach discussed here, this ef-
fect is again a direct consequence of cohomotopical flux-
quantization, now via algebro-topological theorems of Segal
and others, which serve to identify the cohomotopy charge
moduli space with configuration spaces of soliton cores,
whose fundamental group reflects the anyon braid phases
(and thereby also the ground state degeneracy / topological
order).

π0Maps∗
(
R2
∪{∞}, S

2
)

π0Maps∗
(
R2
∪{∞}, B

2Z
)

Z Z

π1Maps∗
(
R2
∪{∞}, S

2
)

π1Maps∗
(
R2
∪{∞}, B

2Z
)

π1GConf(R2)
config space

1
no structure

∼

≃ ≃

same net charges...

≃ ≃

...but different moduli

Note how both these effects come about by changing the traditional
flux-quantization of the Chern-Simons field from the classifying space
for complex line bundles to just its first “cell”. This preserves the
quantization of charges but makes their moduli exhibit anyonic effects.

S2 ≃ CP 1 CP∞ ≃ B2Z
classifying space
for 2-Cohomotopy

classifying space for
ordinary 2-cohomology

1st cell inclusion

(iii) Topological order. The traditional way of establishing topological order is by applying geometric quan-
tization to Wilson line observables, with respect to some effective action, which is a somewhat convoluted process

involving ad-hoc choices and regularizations.
In contrast, in the approach discussed here
the quantum observables obtain immediately,
without further choices, from the topological
light-cone quantization of the flux-quanized
moduli space (as its Pontrjagin homology al-
gebra).

phase
space

Hilbert
space

flux-quantized
gauge fields

topological
observable
algebra

choose prequantum line
bundle & polarization

traditional quantization

choose &
regularize

operators
to represent

topological light-cone quantization

cho
ose

effe
cti
ve

act
ion

Here the looping Ωk that drives this quantum dynamics reflects dependence of moduli on the M/IIA circle.(!)

(iv) Defect anyons — as opposed to the solitonic anyons tracing out “Wilson lines” — seem to have previously
found little to no attention in quantum Hall theory in general and its effective abelian Chern-Simons theories in
particular. And yet, it is only such classically parameterized and hence, in principle, externally controllable defect
anyons which may support braid quantum gates as envision in topological quantum computation.

In our approach, defect braiding emerges just as readily as the solitonic anyons, as a mild kind of quantum
gravitational effect on M5-worldvolumes having a punctured surface factor space. This may be seen as a theoretical
prediction of defect anyons in quantum Hall systems which might inform future search for experimental realization.

20



Summary of results:
On super-space, the equations of motion

of 11D supergravity with magnetic 1/2BPS M5-brane probes
are equivalent to these Bianchi identities on the super-flux densities:

A-field dF s
2 = 0 dGs

4 = 0 C-field

self-dual
B-field

dHs
3 = ϕ∗sG

s
4 + θ F s

2 F
s
2 dGs

7 = 1
2G

s
4G

s
4

dual
C-field

M5 probe Σ1,5 | 2·8+ X1,10 | 32
SuGra bulk

ϕs

1/2BPS immersion

One admissible choice of flux-quantization law (the simplest in number of CW cells)
is twistorial Cohomotopy, where the charges are classified by dashed maps like this:

M5-brane
worldvolume

Σ1,5 CP 3

bulk
spacetime

X1,10 S4

(a1,b2)
A- & B-field charge

ϕ

im
m
e
rsio

n

tH

(c3,c6)

C-field charge

For (very good) G ⊂ Sp(2)-orbifold domains, these maps are to be G-equivariant.

This flux-quantization implies a list of topological effects expected in M-theory.
⇒ Hypothesis H: This is the right choice of flux-quantization for M-theory.

Choosing (“engineering”) the M5-probe to be:

M5-brane probe
worldvolume

2-brane worldvolume
hosting anyonic solitons

M-theory
circle

cone
orbifold

Σ1,5 = R1,0 × Σ2
g,n × S1 × R2

sgn � Z2

∞

anyon

worldline

× ×

the moduli space of solitons becomes:

Moduli ≃ Maps∗
((

R1 × Σ2
g,n

)
∪{∞}, S

2
)

The algebra of topological quantum observables on theses solitons is:

Obs0 := H0

(
Maps∗

((
R1 × Σ2

g,n

)
∪{∞}, S

2
)
; C

)
≃ C

[
π1Maps∗

(
Σ2

g,n, S
2
)]
,

topological
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Pontrjagin homology algebra group algebra

acted on by large diffeomorphisms (general covariance on the brane):

1 Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) 1

braid group large diffeomorphism group mapping class group

The corresponding topological quantum states:

on Σ2
0,0 = S2 reflect abelian braiding of solitonic anyons

on Σ2
g,0 = Σ2

1,0# · · ·#Σ2
1,0 have kg-fold degeneracy: topological order

on Σ2
1,0 = T2 exhibit irred SL2(Z)-modular equivariance

on Σ2
0,n = S2 \ {z1, · · · , zn} reflect abelian braiding of defect anyons
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A broad lesson following immediately from our successful geometric engineering of topological qbits is the
plausible existence of more exotic anyonic states than traditionally envisioned: Namely the “duality symmetry”
[100][26, §6] of M-theory predicts that any geometrically engineered quantum system has “dual” incarnations with
isomorphic quantum observables but entirely different geometric realization, where ordinary space is replaced by
more abstract parameter spaces. Notably “T-duality” [133][35][51] applied to topological quantum materials has
been argued [87][88][57] to exchange the roles of ordinary space with that of reciprocal “momentum space”.

(2) Novel experimental pathways towards anyons. Indeed, while anyonic solitons are traditionally envisioned
as being localized in “position space” (meaning that the anyon cores are points in the plane of the crystal lattice)
the physical principle behind topological quantum gates — namely [3][4][43, p 6][98, p 50] the quantum adiabatic
theorem [107] — is unspecific to position space and only requires the material’s Hamiltonian to depend on any
continuous parameters (such as external voltage or strain) varying in any abstract parameter space.

The general physical conditions for
topological quantum gates given by the
quantum adiabatic theorem, listed (a) - (e) on
the right, are much more general than tradi-
tionally considered for anyon braid gates —
the latter are only the special case where the
parameters are configurations of points in the
plane of the 2D crystal lattice.

(a) Ground state degeneracy (when frozen at absolute zero, the system

still has more than one state to be in, even up to phase).

(b) Spectral gap (quanta of energy smaller than a given gap ϵ > 0 cannot

excite these ground states).

(c) Control parameters (the above properties hold for a range of contin-

uously tunable external parameters).

(d) Parameter topology (there exist closed parameter paths that cannot

be continuously contracted).

(e) Local invariance (continuously deformed parameter paths induce the

same transformation on ground states).

This means that, in principle, the possi-
bilities in which anyonic quantum states
could arise in the laboratory are far more
general than what has been explored to
date.
Concretely, a key example of alternative
parameters for ground states of a quantum
material are points in their reciprocal mo-
mentum space: This is the space of (quasi-
)momenta, hence of wave-vectors for plane
quasi-particle waves going through the
crystalline material.

duality

Position space:
a point is a position
on the crystal lattice

Momentum space:
a point is a plane wave
on the crystal lattice

We have observed before that candidate anyon-like solitons localized (not in position space but) in momentum
space are plausible both theoretically [116] as well as experimentally [142][129][67] and may have been hiding in
plain sight: as band nodes of (interacting) topological semimetals.

Indeed, momentum space naturally features key properties that are typi-
cally assumed for anyon braid gates but remain elusive in position space:

(i) toroidal base topology is routinely assumed [135][137][80] in order
to achieve the required ground-state degeneracy, but is quite unrealistic
in position space, even more so when meant to be punctured by defect
anyons — while the momentum space of a crystal is automatically a torus
(the Brillouin torus).

(ii) stable defect points need special engineering in position space but
arise automatically in momentum space in the guise of band nodes of
topological semi-metals [116, Fig. 6]

(iii) defect point movement in a controlled way is necessary for braid
gates but remains elusive in position space, while band nodes in momen-
tum space have already shown to be movable in a varierty of systems, by
tuning of external parameters (e.g. strain).

The geometric engineering of anyons discussed here goes towards providing also fundamental theoretical under-
pinning of the possibility of more “exotic” anyon realizations than have traditionally been envisioned.
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A Background on Homotopy Theory

Some notions used in the main text, to establish notation and give basic pointers to the literature.

Homotopy theory (cf. [127]). For f0, f1 : X −→ Y a pair of continuous maps between (topological) spaces a
homotopy η : f0 ⇒ f1 is a continous deformation between them: a continuous map η : [0, 1] × X −→ Y such that

η(0, x) = f0(x),

η(1, x) = f1(x),

denoted X Y .

f0

f1

η

For example, a
square “homotopy-
commutative diagram”

Σ A

X B

ϕ

b

pη

c

means that

η : [0, 1]× Σ −→ B
η(0, s) = p

(
b(s)

)
,

η(1, s) = c
(
ϕ(s)

)
.

If one declares – and we do – to work in a “convenient” full sub-category of all topological spaces (such as
that of compactly generated or of Delta-generated topological spaces, cf. [114, p 21, 131]) then the topological space
Maps(X,Y ) of all continuous maps X −→ Y satisfies the adjointness relation

{
P −→ Maps(X,Y )

}
≃

{
P×X −→ Y

}
.

For P ≡ [0, 1] this says that homotopies are equivalently paths in mapping spaces, and that homotopy-classes of
maps are the mapping spaces’ path-connected components: π0 Maps(X,Y ) ≃ Maps(X,Y )/hmtp .

Since homotopies are maps themselves, there are homotopies-between-homotopies and ever higher-homotopies.

Thereby topological spaces constitute a
model for higher categorical symme-
try namely for higher groupoids. As
such, they represent both cohomology as
well as higher gauge fields in the topo-
logical sector. 7

cohomology cocycle coboundary higher coboundary ...

homotopy X Bf
X B

f

f ′

η X B

f

f ′

η′η ...

physics field gauge transf. higher gauge transf. ...

In this vein, spaces are homotopy-
equivalent B ≃ B′ if they are gauge
equivalent namely if we have maps

B B′
f

g
with

g ◦ f ⇒ idB
f ◦ g ⇒ idB′

For example Rn ≃ ∗ in homotopy theory,
reflecting the fact that there is no non-
trivial topological sector for fields on Rn.

For actually computing homotopy classes of maps — hence cohomology, hence gauge-equivalence classes of fields
in the topological sector — tools from model category theory are indispensable, which largely say how to “absorb
homotopies into spaces” (cf. [40, §1]).
E.g., if p : A −→ B is a Serre fibration, such as a fiber bundle,
and Σ is a cell complex, such as a manifold, then sections-up-
to-homotopy of p pulled back to Σ are homotopy equivalent to
plain sections:


Σ A

X B

ϕ

b

pη

c

/
hmtp

Σ ∈ Cof
p ∈ Fib
≃


Σ A

X B

ϕ

b

p

c

/
hmtp

Pointed homotopy theory (cf. [66, §3]). To reflect the condition that solitonic fields are localized in that they
vanish at infinity we
– equip domain spaces X with a point at infinity, ∞X ∈ X,
– equip classifying spaces B with a point representing zero, 0B ∈ B,
– require maps f : (X,∞X) −→ (B, 0B) to respect these base
points


so that
maps literally
vanish at infinity

X B

{∞X} . {0B} .

c

For instance, to make fields on Rn vanish at infinity, we adjoin its would-be “point at infinity” to it (jargon:
“one-point compactification”) to obtain Rn

∪{∞} ≃ Sn. On the other hand, if we want fields on some X without
a vanishing condition, we may adjoin a disjoint point-at-infinity, then pointed maps X⊔{∞} −→ B are ordinary
X −→ B. E.g.:

based loop space free loop space maps out of contractible

Maps∗(R1
∪{∞}, B) = ΩB , Maps∗(S1

⊔{∞}, X) =: LB , Maps∗(R1
⊔{∞}, B) = B

Given a pair of pointed spaces (X,∞X), (Y,∞Y ), in their product space X × Y any point should be regarded
as being at infinity which is so with respect to either factor space; this yields the smash product:

X ∧ Y :=
X×Y

{∞X}×Y ∪X×{∞Y }
to which the sub-space Maps∗(−,−)
of pointed maps is again adjoint:

{
P

pntd−−−→ Maps∗/(X,Y )
}

≃
{
P ∧X pntd−−−→ Y

}
.

For example, Sn ∧ Sm ≃ Rn
∪{∞} ∧ Rm

∪{∞} ≃ (Rn × Rm)∪{∞} ≃ Sn+m, so that for instance:

Maps∗
(
X ∧ S1, B

)
≃ Maps∗

(
S1, Maps∗/

(
X, B

))
=: ΩMaps∗

(
X, B

)
.

7Beyond the topological sector, full higher gauge fields are still represented by maps X −→ B etc., only that now B is no longer just
a topological space but a “smooth ∞-stack”, cf. [33].
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The differential character map chA, at the heart of flux-quantization
in the generality of flux densities with non-linear Bianchi identities:

- takes maps into a classifying space A (classifying charges),

- to maps into the moduli ∞-stack of closed lA-valued differential forms
(classifying corresponding flux densities),

- thereby allowing gauge potentials to relate local flux densities to
global charges.

X

A Ω1
dR

(
−; lA

)
clsd

SΩ1
dR

(
−; lA

)
clsd

cha
rge

s fluxes

ch
A

character

gauge potentials

η
S

At a high level, this chA is readily described: It is the smooth differential-form model for the R-rationalization
of A, followed by derived extension of scalars Q→ R — as indicated in the following paragraphs.

But under the hood, this construction makes use of a fair bit of model category-theoretic rational-homotopy
theory which we do not have space nor inclination to review here (all details in [40]), whence the following should
be ignored by readers without serious background in (rational) homotopy theory — or else taken as motivation to
learn it! (Start at [40, §1].) Here goes:

Fundamental theorem of homotopy theory. Regarding (classify-
ing) spaces up to (weak) homotopy equivalence means equivalently to re-
gard them as their ∞-groupoids (Kan simplicial sets) Sing(−) of points,
paths, 2-paths, etc., in that there is a Quillen equivalence [40, Ex. 1.13]

TopSpQu ∆SetQu≃
Qu

Sing

Fundamental theorem of dg-algebraic rational homotopy the-
ory. Sending simplicial sets to their dgc-algebras of simplex-wise Q-
polynomial differential forms (“piecewise linear”, PL) is the left adjoint
in a Quillen adjunction [40, Prop. 5.5]

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PQLdR

⊥
Qu

Hom
(
(−),ΩPQLdR(∆•)

)
whose derived adjunction-unit models rationalization of (connected,
nilpotent, Q-finite) homotopy types A [40, Prop. 5.6].

A LQA
ηQ
A

For R-rational homotopy. The analogous Quillen adjunction with
R-polynomial forms

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PRL

⊥
Qu

Hom
(
(−),ΩPRLdR(∆•)

)
models rationalization followed by derived extension of scalars from Q
to R (no longer a localization but still denoted like one) [40, Prop. 5.8].

A LQA LRA
ηQ
A

Now with R-coefficients, we may equivalently use simplex-wise smooth
differential forms (piecewise smooth, PS)

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PSdR

⊥
Qu

Hom
(
(−),ΩPSdR(∆•)

)

In fact, we may equivalently use smooth differential forms on simplices
times any Rn [40, Prop. 5.10].

(
dgcAlgs≥0

)op
proj

∆SetsQu

Ω•
PSdR

⊥
Qu

Hom
(
(−),ΩPSdR(Rn×∆•)

)
Taking values in deformations of flux densities.

Via the minimal Sullivan model CE(lA) of A, this
derived adjunction takes values in closed smooth lA-
valued differential forms [40, (9.9)]

Ω1
dR

(
Rn ×∆•, lA

)
clsd

:= Hom
(
CE(lA), ΩdR(Rn ×∆•)

)
which is the value on Rn of the homotopy-constant ∞-stack that
is the shape S(−) of the sheaf of closed forms [114, Prop. 3.3.48]

S Ω1
dR

(
−; lA

)
clsd

∈ Sh∞
(
CartSp

)
In total, regarding also A ∈ Sh∞(∗) Disc−−−→ Sh∞(CartSp), this es-
tablishes the differential character map as promised [40, Def. 9.2]

A SΩ1
dR

(
−; lA

)
clsd

chA
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B Background on TED Cohomotopy

Gauge potentials in twistorial Cohomotopy — and the Green-Schwarz mechanism.

Consider the
Whitehead L∞-algebra
of the twistor fibration
CP 3 tH−→ HP 1 ≃ S4 ,

CE
(
l
S4CP 3

)
= Rd


f2
h3
g4
g7

/


d f2 = 0

dh3 = g4 + f2 f2
d g4 = 0

d g7 = 1
2g4 g4

, and bigons
parameterized
like this:

s

0

1

t

0 1

Theorem ([49, pp 23][50, §4.1]). Given a manifold Ui (generically: a coordinate chart):
(0.) Closed l

S4CP 3-valued differential forms are in natural bijection with flux densities of this form:

Ui

Ω1
dR

(
−; l

S4CP 3
)
clsd

(F2,H3,G4,G7)


p0

i0

p0 ◦ i0 = id

i0 ◦ p0 = id



F2 ∈ Ω2
dR(Ui)

H3 ∈ Ω3
dR(Ui)

G4 ∈ Ω4
dR(Ui)

G7 ∈ Ω7
dR(Ui)

∣∣∣∣∣∣∣∣∣∣∣∣

dF2 = 0

dH3 = G4 + F2 F2

dG4 = 0

dG7 = 1
2 G4G4


(1.) Given one of these, its set of coboundaries (null-concordances) naturally

retracts onto the set of gauge potentials of this form:
Ui ∗

Ω1
dR

(
−; l

S4CP 3
)
clsd

SΩ1
dR

(
−; l

S4CP 3
)
clsd

(F2,H3,G4,G7)
(F̂2,Ĥ3,Ĝ4,Ĝ7)

0

η
S


p1

i1

p1 ◦ i1 = id


A1 ∈ Ω1

dR

(
Ui

)
B2 ∈ Ω2

dR

(
Ui

)
C3 ∈ Ω3

dR

(
Ui

)
C6 ∈ Ω6

dR

(
Ui

)

∣∣∣∣∣∣∣∣∣∣∣

dA1 = F2

dB2 = H3 − C3 −A1 F2

dC3 = G4

dG6 = G7 − 1
2C3G4




F̂2 := t F2 + dt A1

Ĥ3 := tH3 + dtB2 + (t2 − t)A1F2

Ĝ4 := tG4 + dt C3

Ĝ7 := t2G7 + 2tdt C6





A1 :=
∫
[0,1]

F̂2

B2 :=
∫
[0,1]

(
Ĥ3 −

( ∫
[0,−] F̂2

)
F̂2

)
C3 :=

∫
[0,1]

Ĝ4

C6 :=
∫
[0,1]

(
Ĝ7 − 1

2

( ∫
[0,−] Ĝ4

)
Ĝ4

)


(2.) Given a pair of these, the set of higher coboundaries (2nd-order concordances) between them naturally

retracts onto the set of gauge transformations of this form:
0 (F2, H3, G4, G7)

(F̂2, Ĥ3, Ĝ4, Ĝ7)

(F̂ ′2, Ĥ
′
3, Ĝ

′
4, Ĝ

′
7)

(̂̂F 2,
̂̂H3̂̂G4,
̂̂G7

)


p2

i2

p2 ◦ i2 = id


α0 ∈ Ω0

dR(Ui)

β1 ∈ Ω1
dR(Ui)

γ2 ∈ Ω2
dR(Ui)

γ5 ∈ Ω5
dR(Ui)

∣∣∣∣∣∣∣∣∣∣∣

dα0 = A′1 −A1

dβ1 = B′2 −B2 + γ2 + α0 F2

d γ2 = C ′3 − C3

d γ5 = C ′6 − C6 − 1
2C
′
3 C3




̂̂F 2 := t F2 + dt A1 + sdt
(
A′1 −A1

)
− dsdt α0̂̂H3 := tH3 + dtB2 + sdt (B′2 −B2) − dsdt β1

+(t2 − t)A1F2 + (t2 − t)s(A′1 −A1)F2

+(t2 − t)ds α0F2̂̂G4 := tG4 + dt C3 + sdt
(
C ′3 − C3

)
− dsdt γ2̂̂G7 := t2G7 + 2tdt C6 + 2stdt(C ′6 − C6)

− 2ds tdt
(
γ5 + 1

2γ2 C3

)





α0 :=
∫
s∈[0,1]

∫
t∈[0,1]

̂̂F 2

β1 :=
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
( ∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
γ2 :=

∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4

γ5 :=
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

( ∫
t′∈[0,−]

̂̂G4

) ̂̂G4

)
− 1

2γ2 C3



Notice the expression for flux density subject to an (abelian) Green-Schwarz mechanism: H3 = dB2 + A1F2 + C3 .

25



Proof. With the blue terms discarded, this is the statement of [49, pp 23][50, §4.1]. We compile the full argument:

To see that p1 is well-defined:
- for C3, C6 this is [49, (70)],
- for A1 it works just as for C3,
- for B2 we compute, in generalization of [50, below (138)], like this:

dB2 ≡ d
∫
[0,1]

(
Ĥ3 −

( ∫
[0,−] F̂2

)
F̂2

)
= ι∗1

(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

H3−A1 F2

− ι∗0

(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

=0

−
∫
[0,1]

d
(
Ĥ3 −

(∫
[0,−]F̂2

)
F̂2

)
︸ ︷︷ ︸

Ĝ4

= H3 − A1 F2 − C3 .

To see that i1 is well-defined:

- for Ĝ4, Ĝ7 this is [49, (72)],

- for F̂2 it works just as for Ĝ4,

- for Ĥ3 we compute, in generalization of [50, further below (138)], as follows:

d
(
tH3 + dtB2 + (t2 − t)A1F2

)
= dtH3 + tG4 + tF2F2

− dtH3 + dt C3 + dt A1F2

+ d
(
(t2 − t)A1F2

)


hence indeed: d Ĥ3 = tG4 + dt C3︸ ︷︷ ︸

Ĝ4

+

=d(t2A1F2)︷ ︸︸ ︷
(tF2 + dt A1)︸ ︷︷ ︸

F̂2

(tF2 + dt A1)︸ ︷︷ ︸
F̂2

Moreover, it is immediate from inspection that ι∗1Ĥ3 = H3 and ι∗0Ĥ3 = 0.

To see that p1 ◦ i1 = id:

- for C3, C6 this is [49, below (72)],

- for A1 this works just as for C3,

- for B2 we immediately compute:∫
[0,1]

(
Ĥ3 −

(∫
[0,−]F̂2

)
F2

)
=

∫
[0,1]

dtB2︸ ︷︷ ︸
B2

−
∫
[0,1]

tA1 dt A1︸ ︷︷ ︸
=0

= B2 .

To see that p2 is well-defined:

- for ̂̂G4,
̂̂G7 this is [49, (74-5)],

- for ̂̂F 2 this works just as for ̂̂F 2,

- for ̂̂H3 we compute, in generalization of [50, below (140)], as follows:

dβ1 ≡ d
∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
( ∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
= ι∗s=1

∫
t∈[0,1]

( ̂̂H3 − · · ·
)
− ι∗s=0

∫
t∈[0,1]

( ̂̂H3 − · · ·
)
−
∫
s∈[0,1] d

∫
t∈[0,1]

( ̂̂H3 − · · ·
)

=
∫
t∈[0,1] ι

∗
s=1

( ̂̂H3 − · · ·
)
−
∫
t∈[0,1] ι

∗
s=0

( ̂̂H3 − · · ·
)
−
∫
s∈[0,1] ι

∗
t=1

( ̂̂H3 − · · ·
)
+
∫
s∈[0,1]

∫
t∈[0,1] d

( ̂̂H3 − · · ·
)

=
∫
t∈[0,1]

(
Ĥ ′3 − · · ·

)
−
∫
t∈[0,1]

(
Ĥ3 − · · ·

)
+

( ∫
s∈[0,1]

∫
t∈[0,1]

̂̂F 2

)
F2 +

∫
s∈[0,1]

∫
t∈[0,1]

̂̂G4

= B′2 −B2 + α0 F2 + γ2 .

To see that i2 is well-defined:

- for γ2, γ5 this is [49, (76)],

- for α0 this works just as for γ2,
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- for β1 we compute as follows:

d (tH3 + dtB2 + sdt (B′2 −B2) − dsdt β1) =

̂̂G4︷ ︸︸ ︷
tG4 + dt C3 + sdt(C ′3 − C3) − dsdt γ2

+ t F2F2 + dt A1 F2 + sdt(A′1 −A1)F2 − dsdt α0 F2

d

 (t2 − t)A1 F2 + (t2 − t)s(A′1 −A1)F2

+(t2 − t) ds α0 F2

 =

̂̂F 2
̂̂F 2︷ ︸︸ ︷

t2 F2 F2 + 2tdt A1F2 + 2tdt s(A′1 −A1) + 2tdtds α0 F2

− t F2 F2 − dt A1 F2 − dt s(A′1 −A1)F2 − dtds α0 F2

d ̂̂H3 = ̂̂G4 + ̂̂F 2
̂̂F 2 .

Moreover, it is immediate from inspection that ι∗s=0
̂̂H3 = Ĥ3 , ι∗s=1

̂̂H3 = Ĥ ′3 and ι∗t=0 = 0, ι∗t=1 = H3.

To see that p2 ◦ i2 = id, we directly compute,
first ∫

s∈[0,1]
∫
t∈[0,1]

̂̂G4 =
∫
s∈[0,1]

∫
t∈[0,1](−dsdt γ2) = γ2∫

s∈[0,1]
∫
t∈[0,1]

̂̂F 2 =
∫
s∈[0,1]

∫
t∈[0,1](−dsdt α0) = α0

then∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂G7 − 1
2

(∫
t′∈[0,t]

̂̂G4

) ̂̂G4

)
− 1

2 γ2 C3

=
∫
s∈[0,1]

∫
t∈[0,1]

̂̂G7 − 1
2

∫
s∈[0,1]

∫
t∈[0,1]

(
t C3 + st(C ′3 − C2) + tds γ2

)(
tG4 + dt C3 + sdt(C ′3 − C3)− dsdt γ2

)
− 1

2 γ2 C3

=
(
γ5 + 1

2γ2C3

)
− 1

2C3γ2 − 1
4 (C

′
3 − C3)γ2 +

1
2 γ2 C3 +

1
4 γ2 (C

′
3 − C3)︸ ︷︷ ︸

0

− 1
2 γ2 C3

= γ5

and analogously∫
s∈[0,1]

∫
t∈[0,1]

( ∫
t′∈[0,−]

̂̂F 2

) ̂̂F 2

=
∫
s∈[0,1]

∫
t∈[0,1]

(
tA1 + st(A′1 −A1) + tds α0

)(
t F2 + dt A1 + sdt(A′1 −A1) − dsdt α0

)
= 1

2A1α0 +
1
4 (A

′
1 −A1)α0 − 1

2α0A1 − 1
4α0(A

′
1 −A1)

= 0

so that also ∫
s∈[0,1]

∫
t∈[0,1]

( ̂̂H3 −
(∫

t′∈[0,−]
̂̂F 2

) ̂̂F 2

)
=

∫
s∈[0,1]

∫
t∈[0,1](−dsdt β1) = β1 .
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Cocycles in differential 2-Cohomotopy and the abelian Chern-Simons invariant on the 3-Sphere.
Notice that the Bianchi identities encoded by 2-Cohomotopy are the characteristic property of the abelian Chern-
Simons term:

CE
(
lS2

)
≃ Rd

[
f2
h3

]/(
d f2 = 0
dh3 = f2f2

)
⇒ Ω1

dR

(
X; lS2

)
clsd
≃

{
F2 ∈ Ω2

dR(X)

H3 ∈ Ω3
dR(X)

∣∣∣∣∣ dF2 = 0

dH3 = F2 F2

}
We may bring this out more concretely:

Gauge-field configurations on R3 flux-
quantized in 2-Cohomotopy and vanishing in
a neighbourhood of infinity are cocycles in dif-
ferential 2-Cohomotopy on R3

∪{∞}, hence dashed

homotopies as shown on the right [117, §3.3].

R3
∪{∞}

Ω1
dR

(
−; lS2

)
clsd

SS2

SΩ1
dR

(
−; lS2

)
clsd

charge in
2-Cohomotopy

n

flux
den

sity

valu
ed

in lS
2

(F2,H3)
(A1,B2)

gauge potentials
in diff. 2-Cohomotopy

η
S ch

Theorem. For each [n] ∈ π2
(
R3
∪{∞}

)
≃ Z this exists with H3 = 0 and [n] =

∫
R3 A1 F2 the Chern-Simons invariant.

Lemma. On a smooth manifold Σ,
every cocycle α in rational 3-Cohomotopy
is represented by a globally defined differential form H3,

X SΩ1
dR

(
−; lS3

)
clsd

Ω1
dR

(
−; lS3

)
clsd

H3
η

S

Proof of the Lemma. Since lS3 ≃ lB3Q this is just the degree=3 case of the statement that cocycles in de Rham
hyper-cohomology have global representatives on smooth manifolds (using partitions of unity).

Proof of the Theorem. Stereographic projection provides a homeomorphism R3
∪{∞}

∼−→ S3 which is smooth away
from the point at infinity, which we may slightly deform to a smooth degree=1 map that is constant on a neigh-
bourhood of infinity. Since π2(S3) ≃ π2(S

3) ≃ Z we may find a smooth map n : S3 −→ S2, with compact support

away from the base point, so that R3
∪{∞} → S3 n−→ S2 represents the charge [n].

Now the 2-cohomotopical character
map for charges on S3, shown in
black, factors as shown in blue (by
naturality of rationalization), which
furthermore factors as shown in or-
ange (by the above Lemma).

R3
∪{∞} S3 SS3 SS2

Ω1
dR(−; lS3)clsd SΩ1

dR(−; lS3)clsd SΩ1
dR(−; lS2)clsd

η
S

n·dvolS3

n

chS3 chS2

η
S (ln)∗

(4)

Hence to get a differential
cocycle as desired it is suf-
ficient to exhibit gauge po-
tentials (A1, B2) encoding
a concordance filling the
diagram on the right

R3
∪{∞} S3 S2 SS2

Ω1
dR(−; lS3)clsd

Ω1
dR(−; lS2)clsd SΩ1

dR(−; lS2)clsd

n

n·dvolS3

(F2,H3=0)
(A1,B2)

η
S

ch2

(4)

(ln)∗◦ ηS

η
S

But, since H2
dR(S

3) = 0, and by the Whitehead integral
formula (cf. [53, p 134][11, p 228][36, pp 19]) there exists:

 A1 ∈ Ω1
dR(S

3)

B2 ∈ Ω2
dR(S

3)
s.t.

dA1 = F2 := n∗dvolS2

dB2 = n · dvolS3 −A1F2

From this we get the the desired concordance:

(0, n ·dvolS3)⇒ (F2, 0) :

 F̂2 := t F2 + dt A1

Ĥ3 := (t− 1)n dvolS3 + dtB2 + (t2 − t)A1F2 .

(
F̂2, Ĥ3

)
|t=0 = (0, n · dvolS3)(

F̂2, Ĥ3

)
|t=1 = (F2, 0)

d F̂2 = 0 , d Ĥ3 = F̂2 F̂2 .

Cartesian M5-Probes charged in Cohomotopy. The equations of motion for a(n orbifolded) cartesian M5-
probe demand that the flux H3 = const [50, Ex. 3.14], and thus its solitonic vanishing-at-infinity implies H3 = 0.
The above theorem says that such solutions still support non-vanishing cohomotopical charge, in fact that the
vanishing of H3 forces the charge to be carried by the Chern-Simons invariant of the auxiliary gauge field A1 that
is brought in by the cohomotopical flux quantization.
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